Spaces:
Running
on
Zero
Running
on
Zero
File size: 5,391 Bytes
e3a7b6f a17dc9a e3a7b6f e6dda1e e3a7b6f a17dc9a e3a7b6f 4a07537 e3a7b6f 1608585 6fc515c 1608585 6fc515c a17dc9a 6fc515c a17dc9a 1608585 e3a7b6f 1608585 e3a7b6f 6fc515c 1608585 e3a7b6f a17dc9a 6fc515c a17dc9a 5e2b717 e3a7b6f e6dda1e a17dc9a e3a7b6f a17dc9a e3a7b6f a17dc9a e3a7b6f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 |
from fastapi import FastAPI, HTTPException
from pydantic import BaseModel
from llama_cpp import Llama
from concurrent.futures import ThreadPoolExecutor, as_completed
from tqdm import tqdm
import uvicorn
from dotenv import load_dotenv
from difflib import SequenceMatcher
import threading
load_dotenv()
app = FastAPI()
# Configuración de los modelos
model_configs = [
{"repo_id": "Ffftdtd5dtft/gpt2-xl-Q2_K-GGUF", "filename": "gpt2-xl-q2_k.gguf"},
{"repo_id": "Ffftdtd5dtft/Meta-Llama-3.1-8B-Instruct-Q2_K-GGUF", "filename": "meta-llama-3.1-8b-instruct-q2_k.gguf"},
{"repo_id": "Ffftdtd5dtft/gemma-2-9b-it-Q2_K-GGUF", "filename": "gemma-2-9b-it-q2_k.gguf"},
{"repo_id": "Ffftdtd5dtft/Phi-3-mini-128k-instruct-Q2_K-GGUF", "filename": "phi-3-mini-128k-instruct-q2_k.gguf"},
{"repo_id": "Ffftdtd5dtft/Meta-Llama-3.1-8B-Q2_K-GGUF", "filename": "meta-llama-3.1-8b-q2_k.gguf"},
{"repo_id": "Ffftdtd5dtft/Qwen2-7B-Instruct-Q2_K-GGUF", "filename": "qwen2-7b-instruct-q2_k.gguf"},
{"repo_id": "Ffftdtd5dtft/starcoder2-3b-Q2_K-GGUF", "filename": "starcoder2-3b-q2_k.gguf"},
{"repo_id": "Ffftdtd5dtft/Qwen2-1.5B-Instruct-Q2_K-GGUF", "filename": "qwen2-1.5b-instruct-q2_k.gguf"},
]
def load_model(model_config):
print(f"Cargando modelo {model_config['repo_id']}...")
return Llama.from_pretrained(repo_id=model_config['repo_id'], filename=model_config['filename'])
def load_all_models():
print("Iniciando carga de modelos...")
with ThreadPoolExecutor(max_workers=len(model_configs)) as executor:
futures = [executor.submit(load_model, config) for config in model_configs]
models = []
for future in tqdm(as_completed(futures), total=len(model_configs), desc="Cargando modelos", unit="modelo"):
try:
model = future.result()
models.append(model)
print(f"Modelo cargado exitosamente: {model_configs[len(models)-1]['repo_id']}")
except Exception as e:
print(f"Error al cargar el modelo: {e}")
print("Todos los modelos han sido cargados.")
return models
llms = load_all_models()
class ChatRequest(BaseModel):
message: str
top_k: int = 50
top_p: float = 0.95
temperature: float = 0.7
def generate_chat_response(request, llm):
try:
user_input = normalize_input(request.message)
response = llm.create_chat_completion(
messages=[{"role": "user", "content": user_input}],
top_k=request.top_k,
top_p=request.top_p,
temperature=request.temperature
)
reply = response['choices'][0]['message']['content']
return {"response": reply, "literal": user_input}
except Exception as e:
return {"response": f"Error: {str(e)}", "literal": user_input}
def normalize_input(input_text):
return input_text.strip()
def filter_duplicates(responses):
seen = set()
unique_responses = []
for response in responses:
lines = response.split('\n')
unique_lines = set()
for line in lines:
if line not in seen:
seen.add(line)
unique_lines.add(line)
unique_responses.append('\n'.join(unique_lines))
return unique_responses
def select_best_response(responses):
print("Filtrando respuestas...")
unique_responses = filter_duplicates(responses)
unique_responses = list(set(unique_responses))
coherent_responses = filter_by_coherence(unique_responses)
best_response = filter_by_similarity(coherent_responses)
return best_response
def filter_by_coherence(responses):
# Implementa aquí un filtro de coherencia si es necesario
return responses
def filter_by_similarity(responses):
responses.sort(key=len, reverse=True)
best_response = responses[0]
for i in range(1, len(responses)):
ratio = SequenceMatcher(None, best_response, responses[i]).ratio()
if ratio < 0.9:
best_response = responses[i]
break
return best_response
def worker_function(llm, request, progress_bar):
print(f"Generando respuesta con el modelo...")
response = generate_chat_response(request, llm)
progress_bar.update(1)
return response
@app.post("/generate_chat")
async def generate_chat(request: ChatRequest):
if not request.message.strip():
raise HTTPException(status_code=400, detail="The message cannot be empty.")
print(f"Procesando solicitud: {request.message}")
responses = []
num_models = len(llms)
with tqdm(total=num_models, desc="Generando respuestas", unit="modelo") as progress_bar:
with ThreadPoolExecutor(max_workers=num_models) as executor:
futures = [executor.submit(worker_function, llm, request, progress_bar) for llm in llms]
for future in as_completed(futures):
try:
response = future.result()
responses.append(response['response'])
except Exception as exc:
print(f"Error en la generación de respuesta: {exc}")
best_response = select_best_response(responses)
print(f"Mejor respuesta seleccionada: {best_response}")
return {
"best_response": best_response,
"all_responses": responses
}
if __name__ == "__main__":
uvicorn.run(app, host="0.0.0.0", port=7860)
|