Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -1,7 +1,7 @@
|
|
1 |
from llama_cpp import Llama
|
2 |
from concurrent.futures import ThreadPoolExecutor, as_completed
|
3 |
import uvicorn
|
4 |
-
from fastapi import FastAPI, HTTPException
|
5 |
import os
|
6 |
from dotenv import load_dotenv
|
7 |
from pydantic import BaseModel
|
@@ -15,16 +15,20 @@ from faker import Faker
|
|
15 |
import gradio as gr
|
16 |
from threading import Thread
|
17 |
|
|
|
18 |
nltk.download('punkt')
|
19 |
nltk.download('stopwords')
|
20 |
|
|
|
21 |
load_dotenv()
|
22 |
HUGGINGFACE_TOKEN = os.getenv("HUGGINGFACE_TOKEN")
|
23 |
|
|
|
24 |
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(filename)s:%(lineno)d - %(message)s')
|
25 |
|
26 |
fake = Faker()
|
27 |
|
|
|
28 |
global_data = {
|
29 |
'models': {},
|
30 |
'tokens': {
|
@@ -45,31 +49,32 @@ global_data = {
|
|
45 |
'model_params': {},
|
46 |
}
|
47 |
|
|
|
48 |
model_configs = [
|
49 |
{"repo_id": "Ffftdtd5dtft/Meta-Llama-3.1-70B-Q2_K-GGUF", "filename": "meta-llama-3.1-70b-q2_k.gguf", "name": "meta-llama-3.1-70b", "seed": 42, "n_ctx": 1024},
|
50 |
{"repo_id": "Ffftdtd5dtft/gemma-2-27b-Q2_K-GGUF", "filename": "gemma-2-27b-q2_k.gguf", "name": "gemma-2-27b", "seed": 42, "n_ctx": 1024}
|
51 |
]
|
52 |
|
|
|
53 |
def load_model(model_config):
|
54 |
model_name = model_config['name']
|
55 |
if model_name not in global_data['models']:
|
56 |
try:
|
57 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
58 |
|
59 |
-
# Manually define the context parameters
|
60 |
context_params = {
|
61 |
"seed": model_config.get('seed', 42),
|
62 |
"n_ctx": model_config.get('n_ctx', 1024)
|
63 |
}
|
64 |
|
65 |
-
# Initialize
|
66 |
model = Llama.from_pretrained(
|
67 |
repo_id=model_config['repo_id'],
|
68 |
filename=model_config['filename'],
|
69 |
use_auth_token=HUGGINGFACE_TOKEN,
|
70 |
verbose=True,
|
71 |
device=device,
|
72 |
-
context_params=context_params
|
73 |
)
|
74 |
|
75 |
global_data['models'][model_name] = model
|
@@ -79,11 +84,11 @@ def load_model(model_config):
|
|
79 |
logging.critical(f"CRITICAL ERROR loading model '{model_name}': {e}", exc_info=True)
|
80 |
return None
|
81 |
|
82 |
-
# Load all models
|
83 |
for config in model_configs:
|
84 |
load_model(config)
|
85 |
|
86 |
-
#
|
87 |
class ChatRequest(BaseModel):
|
88 |
message: str
|
89 |
|
@@ -91,7 +96,7 @@ class ChatRequest(BaseModel):
|
|
91 |
def normalize_input(input_text):
|
92 |
return input_text.strip()
|
93 |
|
94 |
-
# Function to remove duplicate sentences
|
95 |
def remove_duplicates(text, similarity_threshold=0.85):
|
96 |
sentences = sent_tokenize(text)
|
97 |
unique_sentences = []
|
@@ -106,12 +111,13 @@ def remove_duplicates(text, similarity_threshold=0.85):
|
|
106 |
unique_sentences.append(sentence)
|
107 |
return " ".join(unique_sentences)
|
108 |
|
109 |
-
#
|
110 |
@spaces.GPU(duration=0)
|
111 |
def generate_model_response(model, inputs, model_config):
|
112 |
try:
|
113 |
if model is None:
|
114 |
return []
|
|
|
115 |
responses = []
|
116 |
model_metadata = global_data['model_metadata'].get(model_config['name'], {})
|
117 |
stop_tokens = [global_data['tokens'].get('eos', '<|end_of_text|>')]
|
@@ -140,7 +146,7 @@ def generate_model_response(model, inputs, model_config):
|
|
140 |
# FastAPI app
|
141 |
app = FastAPI()
|
142 |
|
143 |
-
# POST endpoint to handle chat requests
|
144 |
@app.post("/chat")
|
145 |
async def chat(request: ChatRequest):
|
146 |
input_text = normalize_input(request.message)
|
@@ -152,7 +158,7 @@ async def chat(request: ChatRequest):
|
|
152 |
response = generate_model_response(model_instance, input_text, model_configs[0])
|
153 |
return {"response": response[0] if response else "No response generated."}
|
154 |
|
155 |
-
# Gradio
|
156 |
def gradio_interface(input_text):
|
157 |
model_name = "meta-llama-3.1-70b"
|
158 |
model_instance = global_data['models'].get(model_name, None)
|
@@ -161,14 +167,19 @@ def gradio_interface(input_text):
|
|
161 |
response = generate_model_response(model_instance, input_text, model_configs[0])
|
162 |
return response[0] if response else "No response generated."
|
163 |
|
164 |
-
# Gradio
|
165 |
def start_gradio_interface():
|
166 |
gr.Interface(fn=gradio_interface, inputs="text", outputs="text").launch(share=True)
|
167 |
|
168 |
-
# Run Gradio in a separate thread
|
169 |
-
|
170 |
-
gradio_thread
|
|
|
|
|
|
|
|
|
|
|
171 |
|
172 |
-
# Run
|
173 |
if __name__ == "__main__":
|
174 |
uvicorn.run(app, host="0.0.0.0", port=7860)
|
|
|
1 |
from llama_cpp import Llama
|
2 |
from concurrent.futures import ThreadPoolExecutor, as_completed
|
3 |
import uvicorn
|
4 |
+
from fastapi import FastAPI, HTTPException
|
5 |
import os
|
6 |
from dotenv import load_dotenv
|
7 |
from pydantic import BaseModel
|
|
|
15 |
import gradio as gr
|
16 |
from threading import Thread
|
17 |
|
18 |
+
# Download NLTK resources
|
19 |
nltk.download('punkt')
|
20 |
nltk.download('stopwords')
|
21 |
|
22 |
+
# Load environment variables from .env file
|
23 |
load_dotenv()
|
24 |
HUGGINGFACE_TOKEN = os.getenv("HUGGINGFACE_TOKEN")
|
25 |
|
26 |
+
# Set up logging
|
27 |
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(filename)s:%(lineno)d - %(message)s')
|
28 |
|
29 |
fake = Faker()
|
30 |
|
31 |
+
# Global data structure to hold models and configurations
|
32 |
global_data = {
|
33 |
'models': {},
|
34 |
'tokens': {
|
|
|
49 |
'model_params': {},
|
50 |
}
|
51 |
|
52 |
+
# Model configurations
|
53 |
model_configs = [
|
54 |
{"repo_id": "Ffftdtd5dtft/Meta-Llama-3.1-70B-Q2_K-GGUF", "filename": "meta-llama-3.1-70b-q2_k.gguf", "name": "meta-llama-3.1-70b", "seed": 42, "n_ctx": 1024},
|
55 |
{"repo_id": "Ffftdtd5dtft/gemma-2-27b-Q2_K-GGUF", "filename": "gemma-2-27b-q2_k.gguf", "name": "gemma-2-27b", "seed": 42, "n_ctx": 1024}
|
56 |
]
|
57 |
|
58 |
+
# Function to load model
|
59 |
def load_model(model_config):
|
60 |
model_name = model_config['name']
|
61 |
if model_name not in global_data['models']:
|
62 |
try:
|
63 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
64 |
|
|
|
65 |
context_params = {
|
66 |
"seed": model_config.get('seed', 42),
|
67 |
"n_ctx": model_config.get('n_ctx', 1024)
|
68 |
}
|
69 |
|
70 |
+
# Initialize model
|
71 |
model = Llama.from_pretrained(
|
72 |
repo_id=model_config['repo_id'],
|
73 |
filename=model_config['filename'],
|
74 |
use_auth_token=HUGGINGFACE_TOKEN,
|
75 |
verbose=True,
|
76 |
device=device,
|
77 |
+
context_params=context_params
|
78 |
)
|
79 |
|
80 |
global_data['models'][model_name] = model
|
|
|
84 |
logging.critical(f"CRITICAL ERROR loading model '{model_name}': {e}", exc_info=True)
|
85 |
return None
|
86 |
|
87 |
+
# Load all models at the start
|
88 |
for config in model_configs:
|
89 |
load_model(config)
|
90 |
|
91 |
+
# Pydantic model to validate incoming requests
|
92 |
class ChatRequest(BaseModel):
|
93 |
message: str
|
94 |
|
|
|
96 |
def normalize_input(input_text):
|
97 |
return input_text.strip()
|
98 |
|
99 |
+
# Function to remove duplicate sentences
|
100 |
def remove_duplicates(text, similarity_threshold=0.85):
|
101 |
sentences = sent_tokenize(text)
|
102 |
unique_sentences = []
|
|
|
111 |
unique_sentences.append(sentence)
|
112 |
return " ".join(unique_sentences)
|
113 |
|
114 |
+
# Function to handle model response generation with GPU fallback
|
115 |
@spaces.GPU(duration=0)
|
116 |
def generate_model_response(model, inputs, model_config):
|
117 |
try:
|
118 |
if model is None:
|
119 |
return []
|
120 |
+
|
121 |
responses = []
|
122 |
model_metadata = global_data['model_metadata'].get(model_config['name'], {})
|
123 |
stop_tokens = [global_data['tokens'].get('eos', '<|end_of_text|>')]
|
|
|
146 |
# FastAPI app
|
147 |
app = FastAPI()
|
148 |
|
149 |
+
# FastAPI POST endpoint to handle chat requests
|
150 |
@app.post("/chat")
|
151 |
async def chat(request: ChatRequest):
|
152 |
input_text = normalize_input(request.message)
|
|
|
158 |
response = generate_model_response(model_instance, input_text, model_configs[0])
|
159 |
return {"response": response[0] if response else "No response generated."}
|
160 |
|
161 |
+
# Gradio interface for model testing
|
162 |
def gradio_interface(input_text):
|
163 |
model_name = "meta-llama-3.1-70b"
|
164 |
model_instance = global_data['models'].get(model_name, None)
|
|
|
167 |
response = generate_model_response(model_instance, input_text, model_configs[0])
|
168 |
return response[0] if response else "No response generated."
|
169 |
|
170 |
+
# Gradio interface setup
|
171 |
def start_gradio_interface():
|
172 |
gr.Interface(fn=gradio_interface, inputs="text", outputs="text").launch(share=True)
|
173 |
|
174 |
+
# Run Gradio in a separate thread
|
175 |
+
def start_gradio():
|
176 |
+
gradio_thread = Thread(target=start_gradio_interface)
|
177 |
+
gradio_thread.daemon = True # Ensures the thread will exit when the main program exits
|
178 |
+
gradio_thread.start()
|
179 |
+
|
180 |
+
# Start the Gradio interface
|
181 |
+
start_gradio()
|
182 |
|
183 |
+
# Run FastAPI app using uvicorn
|
184 |
if __name__ == "__main__":
|
185 |
uvicorn.run(app, host="0.0.0.0", port=7860)
|