likewendy's picture
del dir
9961c4d
raw
history blame
2.56 kB
import spaces
import gradio as gr
from transformers import AutoModelForCausalLM, AutoTokenizer
from huggingface_hub import whoami
import os
os.system("rm -rf /data-nvme/zerogpu-offload/*")
# 定义系统提示语
system_prompt = """你是 Skywork-o1,Skywork AI 开发的思维模型,擅长通过深度思考解决涉及数学、编码和逻辑推理的复杂问题。面对用户请求时,你首先会进行一段漫长而深入的思考过程,探索问题的可能解决方案。完成思考后,你会在回复中详细解释解决过程。"""
# 初始化模型和分词器
model_name = "Skywork/Skywork-o1-Open-Llama-3.1-8B"
model = AutoModelForCausalLM.from_pretrained(
model_name,
torch_dtype="auto",
device_map="auto"
)
tokenizer = AutoTokenizer.from_pretrained(model_name)
# 定义生成回复的函数
@spaces.GPU
def respond(
message,
history: list[tuple[str, str]],
system_message,
max_tokens,
temperature,
top_p,
):
# 构造对话历史
conversation = [{"role": "system", "content": system_message}]
for user_msg, assistant_msg in history:
if user_msg:
conversation.append({"role": "user", "content": user_msg})
if assistant_msg:
conversation.append({"role": "assistant", "content": assistant_msg})
conversation.append({"role": "user", "content": message})
# 构造输入
input_ids = tokenizer.apply_chat_template(
conversation,
tokenize=True,
add_generation_prompt=True,
return_tensors="pt"
).to(model.device)
# 模型生成
generation = model.generate(
input_ids=input_ids,
max_new_tokens=max_tokens,
do_sample=True,
temperature=temperature,
top_p=top_p,
pad_token_id=tokenizer.pad_token_id,
)
# 解码生成内容
completion = tokenizer.decode(
generation[0][len(input_ids[0]):],
skip_special_tokens=True,
clean_up_tokenization_spaces=True
)
return completion
# 定义Gradio界面
demo = gr.ChatInterface(
fn=respond,
additional_inputs=[
gr.Textbox(value=system_prompt, label="System message"),
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
gr.Slider(
minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)"
),
],
# chatbot_style="default"
)
if __name__ == "__main__":
demo.launch()