Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,37 +1,67 @@
|
|
1 |
from transformers import pipeline
|
2 |
import gradio as gr
|
3 |
|
4 |
-
|
|
|
|
|
|
|
5 |
|
|
|
|
|
|
|
|
|
|
|
6 |
def merge_tokens(tokens):
|
7 |
merged_tokens = []
|
8 |
for token in tokens:
|
9 |
if merged_tokens and token['entity'].startswith('I-') and merged_tokens[-1]['entity'].endswith(token['entity'][2:]):
|
10 |
-
#
|
11 |
last_token = merged_tokens[-1]
|
12 |
last_token['word'] += token['word'].replace('##', '')
|
13 |
last_token['end'] = token['end']
|
14 |
last_token['score'] = (last_token['score'] + token['score']) / 2
|
15 |
else:
|
16 |
-
#
|
17 |
merged_tokens.append(token)
|
18 |
-
|
19 |
return merged_tokens
|
20 |
|
|
|
21 |
def ner(input):
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
36 |
|
37 |
demo.launch(inline=False)
|
|
|
1 |
from transformers import pipeline
|
2 |
import gradio as gr
|
3 |
|
4 |
+
# Cargar modelos
|
5 |
+
model1 = "gyr66/RoBERTa-ext-large-crf-chinese-finetuned-ner-v2"
|
6 |
+
model2 = "gyr66/Ernie-3.0-large-chinese-finetuned-ner"
|
7 |
+
model3 = "gyr66/Ernie-3.0-base-chinese-finetuned-ner"
|
8 |
|
9 |
+
get_completion1 = pipeline("ner", model1)
|
10 |
+
get_completion2 = pipeline("ner", model2)
|
11 |
+
get_completion3 = pipeline("ner", model3)
|
12 |
+
|
13 |
+
# Funci贸n para fusionar tokens
|
14 |
def merge_tokens(tokens):
|
15 |
merged_tokens = []
|
16 |
for token in tokens:
|
17 |
if merged_tokens and token['entity'].startswith('I-') and merged_tokens[-1]['entity'].endswith(token['entity'][2:]):
|
18 |
+
# Si el token contin煤a la entidad del anterior, fusi贸nalos
|
19 |
last_token = merged_tokens[-1]
|
20 |
last_token['word'] += token['word'].replace('##', '')
|
21 |
last_token['end'] = token['end']
|
22 |
last_token['score'] = (last_token['score'] + token['score']) / 2
|
23 |
else:
|
24 |
+
# De lo contrario, agrega el token a la lista
|
25 |
merged_tokens.append(token)
|
|
|
26 |
return merged_tokens
|
27 |
|
28 |
+
# Funci贸n de NER
|
29 |
def ner(input):
|
30 |
+
output1 = get_completion1(input)
|
31 |
+
output2 = get_completion2(input)
|
32 |
+
output3 = get_completion3(input)
|
33 |
+
|
34 |
+
merged_tokens1 = merge_tokens(output1)
|
35 |
+
merged_tokens2 = merge_tokens(output2)
|
36 |
+
merged_tokens3 = merge_tokens(output3)
|
37 |
+
|
38 |
+
# Formatear la salida para Gradio
|
39 |
+
entities1 = [{"entity": t['entity'], "start": t['start'], "end": t['end']} for t in merged_tokens1]
|
40 |
+
entities2 = [{"entity": t['entity'], "start": t['start'], "end": t['end']} for t in merged_tokens2]
|
41 |
+
entities3 = [{"entity": t['entity'], "start": t['start'], "end": t['end']} for t in merged_tokens3]
|
42 |
+
|
43 |
+
return (
|
44 |
+
{"text": input, "entities": entities1},
|
45 |
+
{"text": input, "entities": entities2},
|
46 |
+
{"text": input, "entities": entities3}
|
47 |
+
)
|
48 |
+
|
49 |
+
# Crear interfaz Gradio
|
50 |
+
demo = gr.Interface(
|
51 |
+
fn=ner,
|
52 |
+
inputs=gr.Textbox(label="Text to find entities", lines=2),
|
53 |
+
outputs=[
|
54 |
+
gr.HighlightedText(label=f"NER Output - Model 1"),
|
55 |
+
gr.HighlightedText(label=f"NER Output - Model 2"),
|
56 |
+
gr.HighlightedText(label=f"NER Output - Model 3")
|
57 |
+
],
|
58 |
+
title="NER with Multiple Models",
|
59 |
+
description="Extract entities using three different models.",
|
60 |
+
allow_flagging="never",
|
61 |
+
examples=[
|
62 |
+
"My name is Andrew, I'm building DeeplearningAI and I live in California",
|
63 |
+
"My name is Poli, I live in Vienna and work at HuggingFace"
|
64 |
+
]
|
65 |
+
)
|
66 |
|
67 |
demo.launch(inline=False)
|