Spaces:
Running
Running
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,67 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import torch
|
3 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
4 |
+
|
5 |
+
# 模型名称(官方仓库)
|
6 |
+
model_name = "Qwen/Qwen2.5-0.5B-Instruct"
|
7 |
+
|
8 |
+
# 加载分词器
|
9 |
+
tokenizer = AutoTokenizer.from_pretrained(
|
10 |
+
model_name,
|
11 |
+
trust_remote_code=True
|
12 |
+
)
|
13 |
+
|
14 |
+
# 加载模型到 CPU
|
15 |
+
model = AutoModelForCausalLM.from_pretrained(
|
16 |
+
model_name,
|
17 |
+
trust_remote_code=True,
|
18 |
+
).to("cpu") # 显式移至CPU
|
19 |
+
|
20 |
+
# 简易对话函数
|
21 |
+
def predict(query, history=None):
|
22 |
+
if history is None:
|
23 |
+
history = []
|
24 |
+
|
25 |
+
# 编码输入
|
26 |
+
inputs = tokenizer(query, return_tensors="pt")
|
27 |
+
# 放到CPU张量上
|
28 |
+
input_ids = inputs["input_ids"].to("cpu")
|
29 |
+
attention_mask = inputs["attention_mask"].to("cpu")
|
30 |
+
|
31 |
+
# 推理
|
32 |
+
with torch.no_grad():
|
33 |
+
output_ids = model.generate(
|
34 |
+
input_ids=input_ids,
|
35 |
+
attention_mask=attention_mask,
|
36 |
+
max_new_tokens=128,
|
37 |
+
do_sample=True,
|
38 |
+
top_p=0.9,
|
39 |
+
temperature=0.8
|
40 |
+
)
|
41 |
+
|
42 |
+
# 解码
|
43 |
+
output_text = tokenizer.decode(
|
44 |
+
output_ids[0][inputs["input_ids"].shape[1]:],
|
45 |
+
skip_special_tokens=True
|
46 |
+
)
|
47 |
+
|
48 |
+
# 更新对话历史
|
49 |
+
history.append((query, output_text))
|
50 |
+
return history, history
|
51 |
+
|
52 |
+
# 搭建 Gradio 界面
|
53 |
+
with gr.Blocks() as demo:
|
54 |
+
gr.Markdown("## Qwen2.5-0.5B-Instruct (CPU) 测试 Demo")
|
55 |
+
chatbot = gr.Chatbot(label="Qwen Chatbot")
|
56 |
+
msg = gr.Textbox(label="输入你的问题或对话")
|
57 |
+
state = gr.State([])
|
58 |
+
|
59 |
+
submit = gr.Button("发送")
|
60 |
+
submit.click(
|
61 |
+
fn=predict,
|
62 |
+
inputs=[msg, state],
|
63 |
+
outputs=[chatbot, state]
|
64 |
+
)
|
65 |
+
|
66 |
+
# 启动服务
|
67 |
+
demo.launch(server_name="0.0.0.0", server_port=7860)
|