lyangas
commited on
Commit
·
6304a81
1
Parent(s):
e5128ee
init commit
Browse files- Dockerfile +13 -0
- app.py +67 -0
- model_finetuned_clear.pkl +3 -0
- required_classes.py +74 -0
- requirements.txt +5 -0
Dockerfile
ADDED
@@ -0,0 +1,13 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
FROM python:3.8
|
2 |
+
|
3 |
+
WORKDIR /code
|
4 |
+
|
5 |
+
COPY ./requirements.txt /code/requirements.txt
|
6 |
+
|
7 |
+
RUN pip install --upgrade -r /code/requirements.txt
|
8 |
+
|
9 |
+
COPY ./model_finetuned_clear.pkl ./model_finetuned_clear.pkl
|
10 |
+
COPY ./required_classes.py ./required_classes.py
|
11 |
+
COPY ./app.py ./app.py
|
12 |
+
|
13 |
+
CMD ["python", "app.py"]
|
app.py
ADDED
@@ -0,0 +1,67 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
print('INFO: import modules')
|
2 |
+
from flask import Flask, request
|
3 |
+
import json
|
4 |
+
import pickle
|
5 |
+
import numpy as np
|
6 |
+
|
7 |
+
from required_classes import BertEmbedder, PredictModel
|
8 |
+
|
9 |
+
|
10 |
+
print('INFO: loading model')
|
11 |
+
try:
|
12 |
+
with open('model_finetuned_clear.pkl', 'rb') as f:
|
13 |
+
model = pickle.load(f)
|
14 |
+
model.batch_size = 1
|
15 |
+
print('INFO: model loaded')
|
16 |
+
except Exception as e:
|
17 |
+
print(f"ERROR: loading models failed with: {str(e)}")
|
18 |
+
|
19 |
+
def classify_code(text, top_n):
|
20 |
+
embed = model._texts2vecs([text])
|
21 |
+
probs = model.classifier_code.predict_proba(embed)
|
22 |
+
best_n = np.flip(np.argsort(probs, axis=1,)[0,-top_n:])
|
23 |
+
preds = [{'code': model.classifier_code.classes_[i], 'proba': probs[0][i]} for i in best_n]
|
24 |
+
return preds
|
25 |
+
|
26 |
+
def classify_group(text, top_n):
|
27 |
+
embed = model._texts2vecs([text])
|
28 |
+
probs = model.classifier_group.predict_proba(embed)
|
29 |
+
best_n = np.flip(np.argsort(probs, axis=1,)[0,-top_n:])
|
30 |
+
preds = [{'group': model.classifier_group.classes_[i], 'proba': probs[0][i]} for i in best_n]
|
31 |
+
return preds
|
32 |
+
|
33 |
+
|
34 |
+
app = Flask(__name__)
|
35 |
+
|
36 |
+
@app.get("/")
|
37 |
+
def test_get():
|
38 |
+
return {'hello': 'world'}
|
39 |
+
|
40 |
+
@app.route("/test", methods=['POST'])
|
41 |
+
def test():
|
42 |
+
data = request.form
|
43 |
+
return {'response': data}
|
44 |
+
|
45 |
+
@app.route("/predict", methods=['POST'])
|
46 |
+
def read_root():
|
47 |
+
data = request.form
|
48 |
+
text = str(data['text'])
|
49 |
+
top_n = int(data['top_n'])
|
50 |
+
|
51 |
+
if top_n < 1:
|
52 |
+
return {'error': 'top_n should be geather than 0'}
|
53 |
+
if text.strip() == '':
|
54 |
+
return {'error': 'text is empty'}
|
55 |
+
|
56 |
+
pred_codes = classify_code(text, top_n)
|
57 |
+
pred_groups = classify_group(text, top_n)
|
58 |
+
result = {
|
59 |
+
"icd10":
|
60 |
+
{'result': pred_codes[0]['code'], 'details': pred_codes},
|
61 |
+
"dx_group":
|
62 |
+
{'result': pred_groups[0]['group'], 'details': pred_groups}
|
63 |
+
}
|
64 |
+
return result
|
65 |
+
|
66 |
+
if __name__ == "__main__":
|
67 |
+
app.run(host='0.0.0.0', port=7860)
|
model_finetuned_clear.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:4c40076019c4b4767021bf208200a8104f0910669d0b56952e6b2eb62b1539d3
|
3 |
+
size 434856921
|
required_classes.py
ADDED
@@ -0,0 +1,74 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import numpy as np
|
2 |
+
from typing import List
|
3 |
+
|
4 |
+
|
5 |
+
class BertEmbedder:
|
6 |
+
def __init__(self, model_path:str, cut_head:bool=False):
|
7 |
+
"""
|
8 |
+
cut_head = True if the model have classifier head
|
9 |
+
"""
|
10 |
+
self.embedder = BertForSequenceClassification.from_pretrained(model_path)
|
11 |
+
self.max_length = self.embedder.config.max_position_embeddings
|
12 |
+
self.tokenizer = AutoTokenizer.from_pretrained(model_path, max_length=self.max_length)
|
13 |
+
|
14 |
+
if cut_head:
|
15 |
+
self.embedder = self.embedder.bert
|
16 |
+
|
17 |
+
self.device = "cuda:0" if torch.cuda.is_available() else "cpu"
|
18 |
+
self.embedder.to(self.device)
|
19 |
+
|
20 |
+
def __call__(self, text: str):
|
21 |
+
encoded_input = self.tokenizer(text,
|
22 |
+
return_tensors='pt',
|
23 |
+
max_length=self.max_length,
|
24 |
+
padding=True,
|
25 |
+
truncation=True).to(self.device)
|
26 |
+
model_output = self.embedder(**encoded_input)
|
27 |
+
text_embed = model_output.pooler_output[0].cpu()
|
28 |
+
return text_embed
|
29 |
+
|
30 |
+
def batch_predict(self, texts: List[str]):
|
31 |
+
encoded_input = self.tokenizer(texts,
|
32 |
+
return_tensors='pt',
|
33 |
+
max_length=self.max_length,
|
34 |
+
padding=True,
|
35 |
+
truncation=True).to(self.device)
|
36 |
+
model_output = self.embedder(**encoded_input)
|
37 |
+
texts_embeds = model_output.pooler_output.cpu()
|
38 |
+
return texts_embeds
|
39 |
+
|
40 |
+
class PredictModel:
|
41 |
+
def __init__(self, embedder, classifier, batch_size=8):
|
42 |
+
self.batch_size = batch_size
|
43 |
+
self.embedder = embedder
|
44 |
+
self.classifier = classifier
|
45 |
+
|
46 |
+
def _texts2vecs(self, texts, log=False):
|
47 |
+
embeds = []
|
48 |
+
batches_texts = np.array_split(texts, len(texts) // self.batch_size)
|
49 |
+
if log:
|
50 |
+
iterator = tqdm(batches_texts)
|
51 |
+
else:
|
52 |
+
iterator = batches_texts
|
53 |
+
for batch_texts in iterator:
|
54 |
+
batch_texts = batch_texts.tolist()
|
55 |
+
embeds += self.embedder.batch_predict(batch_texts).tolist()
|
56 |
+
embeds = np.array(embeds)
|
57 |
+
return embeds
|
58 |
+
|
59 |
+
def fit(self, texts: List[str], labels: List[str], log: bool=False):
|
60 |
+
if log:
|
61 |
+
print('Start text2vec transform')
|
62 |
+
embeds = self._texts2vecs(texts, log)
|
63 |
+
if log:
|
64 |
+
print('Start classifier fitting')
|
65 |
+
self.classifier.fit(embeds, labels)
|
66 |
+
|
67 |
+
def predict(self, texts: List[str], log: bool=False):
|
68 |
+
if log:
|
69 |
+
print('Start text2vec transform')
|
70 |
+
embeds = self._texts2vecs(texts, log)
|
71 |
+
if log:
|
72 |
+
print('Start classifier prediction')
|
73 |
+
prediction = self.classifier.predict(embeds)
|
74 |
+
return prediction
|
requirements.txt
ADDED
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
numpy==1.22.4
|
2 |
+
torch==2.0.1
|
3 |
+
scikit-learn==1.2.2
|
4 |
+
transformers==4.29.2
|
5 |
+
flask==2.0.3
|