Spaces:
Running
on
Zero
Running
on
Zero
import gradio as gr | |
import torch | |
from diffusers import StableDiffusionXLPipeline, AutoencoderKL | |
from huggingface_hub import hf_hub_download | |
import lora | |
from time import sleep | |
import copy | |
import json | |
with open("sdxl_loras.json", "r") as file: | |
sdxl_loras = [ | |
( | |
item["image"], | |
item["title"], | |
item["repo"], | |
item["trigger_word"], | |
item["weights"], | |
item["is_compatible"], | |
) | |
for item in json.load(file) | |
] | |
saved_names = [ | |
hf_hub_download(repo_id, filename) for _, _, repo_id, _, filename, _ in sdxl_loras | |
] | |
device = "cuda" #replace this to `mps` if on a MacOS Silicon | |
def update_selection(selected_state: gr.SelectData): | |
lora_repo = sdxl_loras[selected_state.index][2] | |
instance_prompt = sdxl_loras[selected_state.index][3] | |
updated_text = f"### Selected: [{lora_repo}](https://huggingface.co/{lora_repo})" | |
return updated_text, instance_prompt, selected_state | |
vae = AutoencoderKL.from_pretrained( | |
"madebyollin/sdxl-vae-fp16-fix", torch_dtype=torch.float16 | |
) | |
pipe = StableDiffusionXLPipeline.from_pretrained( | |
"stabilityai/stable-diffusion-xl-base-1.0", | |
vae=vae, | |
torch_dtype=torch.float16, | |
).to("cpu") | |
original_pipe = copy.deepcopy(pipe) | |
pipe.to(device) | |
last_lora = "" | |
last_merged = False | |
def run_lora(prompt, negative, weight, selected_state): | |
global last_lora, last_merged, pipe | |
if not selected_state: | |
raise gr.Error("You must select a LoRA") | |
repo_name = sdxl_loras[selected_state.index][2] | |
weight_name = sdxl_loras[selected_state.index][4] | |
full_path_lora = saved_names[selected_state.index] | |
cross_attention_kwargs = None | |
if last_lora != repo_name: | |
if last_merged: | |
pipe = copy.deepcopy(original_pipe) | |
pipe.to(device) | |
else: | |
pipe.unload_lora_weights() | |
is_compatible = sdxl_loras[selected_state.index][5] | |
if is_compatible: | |
pipe.load_lora_weights(full_path_lora) | |
cross_attention_kwargs = {"scale": weight} | |
else: | |
for weights_file in [full_path_lora]: | |
if ";" in weights_file: | |
weights_file, multiplier = weights_file.split(";") | |
multiplier = float(weight) | |
else: | |
multiplier = 1.0 | |
multiplier = torch.tensor([multiplier], dtype=torch.float16, device=device) | |
lora_model, weights_sd = lora.create_network_from_weights( | |
multiplier, | |
full_path_lora, | |
pipe.vae, | |
pipe.text_encoder, | |
pipe.unet, | |
for_inference=True, | |
) | |
lora_model = lora_model.to("cuda") | |
lora_model.apply_to(pipe.text_encoder, pipe.unet) #is apply too all you need? | |
last_merged = True | |
image = pipe( | |
prompt=prompt, | |
negative_prompt=negative, | |
num_inference_steps=20, | |
guidance_scale=7.5, | |
cross_attention_kwargs=cross_attention_kwargs, | |
).images[0] | |
last_lora = repo_name | |
return image | |
css = """ | |
#title{text-align: center;margin-bottom: 0.5em} | |
#title h1{font-size: 3em} | |
#prompt textarea{width: calc(100% - 160px);border-top-right-radius: 0px;border-bottom-right-radius: 0px;} | |
#run_button{position:absolute;margin-top: 38px;right: 0;margin-right: 0.8em;border-bottom-left-radius: 0px; | |
border-top-left-radius: 0px;} | |
#gallery{display:flex} | |
#gallery .grid-wrap{min-height: 100%;} | |
""" | |
with gr.Blocks(css=css) as demo: | |
title = gr.Markdown("# LoRA the Explorer 🔎", elem_id="title") | |
with gr.Row(): | |
gallery = gr.Gallery( | |
value=[(a, b) for a, b, _, _, _, _ in sdxl_loras], | |
label="SDXL LoRA Gallery", | |
allow_preview=False, | |
columns=3, | |
elem_id="gallery", | |
) | |
with gr.Column(): | |
prompt_title = gr.Markdown( | |
value="### Click on a LoRA in the gallery to select it", visible=True | |
) | |
with gr.Row(): | |
prompt = gr.Textbox(label="Prompt", elem_id="prompt") | |
button = gr.Button("Run", elem_id="run_button") | |
result = gr.Image(interactive=False, label="result") | |
with gr.Accordion("Advanced options", open=False): | |
negative = gr.Textbox(label="Negative Prompt") | |
weight = gr.Slider(0, 1, value=1, step=0.1, label="LoRA weight") | |
with gr.Column(): | |
gr.Markdown("Use it with:") | |
with gr.Row(): | |
with gr.Accordion("🧨 diffusers", open=False): | |
gr.Markdown("") | |
with gr.Accordion("ComfyUI", open=False): | |
gr.Markdown("") | |
with gr.Accordion("Invoke AI", open=False): | |
gr.Markdown("") | |
with gr.Accordion("SD.Next (AUTO1111 fork)", open=False): | |
gr.Markdown("") | |
selected_state = gr.State() | |
gallery.select( | |
update_selection, | |
outputs=[prompt_title, prompt, selected_state], | |
queue=False, | |
show_progress=False, | |
) | |
prompt.submit( | |
fn=run_lora, inputs=[prompt, negative, weight, selected_state], outputs=result | |
) | |
button.click( | |
fn=run_lora, inputs=[prompt, negative, weight, selected_state], outputs=result | |
) | |
demo.launch() | |