File size: 7,784 Bytes
9c15e66 14a458d 9717fe0 9c15e66 9717fe0 9c15e66 9717fe0 8a589e9 14a458d 9717fe0 9c15e66 9717fe0 14a458d 9c15e66 4cbcc7c 9717fe0 4cbcc7c 9717fe0 4cbcc7c 9717fe0 4cbcc7c 9c15e66 4cbcc7c 9c15e66 4cbcc7c 14a458d 9c15e66 3c22a8d 9c15e66 20aeaf0 9c15e66 14a458d 9c15e66 14a458d 9c15e66 9717fe0 9c15e66 9717fe0 9c15e66 173336d 9c15e66 173336d 9c15e66 6a06974 9c15e66 14a458d 9c15e66 9717fe0 4f65ff4 9717fe0 4f65ff4 9717fe0 4f65ff4 9717fe0 14a458d 52b4297 9717fe0 9c15e66 fda1c13 9717fe0 70cbfc1 9c15e66 8a589e9 9c15e66 9717fe0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 |
from PIL import Image
from io import BytesIO
from matplotlib.figure import Figure
from torchvision import transforms
from tqdm import tqdm
from typing import Literal, Any
from urllib.request import urlopen
import gradio as gr
import matplotlib.pyplot as plt
import os
import spaces
import sys
import torch
import torch.nn.functional as F
LABELS = [
"Panoramic",
"Feature",
"Detail",
"Enclosed",
"Focal",
"Ephemeral",
"Canopied",
]
MODELFILE = "Litton-7type-visual-landscape-model.pth"
device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu")
if not os.path.exists(MODELFILE):
model_url = f"https://lclab.thu.edu.tw/modelzoo/{MODELFILE}"
print(f"fetch model from {model_url}...", file=sys.stderr)
with urlopen(model_url) as resp:
progress = tqdm(total=int(resp["Content-Length"]), desc="Downloading")
with open(MODELFILE, "wb") as modelfile:
while True:
chunk = resp.read(1024)
if len(chunk) == 0:
break
modelfile.write(chunk)
progress.update(len(chunk))
model = torch.load(
MODELFILE, map_location=device, weights_only=False
).module
model.eval()
preprocess = transforms.Compose(
[
transforms.Resize(256),
transforms.CenterCrop(224),
transforms.ToTensor(),
transforms.Normalize(
mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]
),
]
)
@spaces.GPU
def predict(image: Image.Image) -> Figure:
image = image.convert("RGB")
input_tensor = preprocess(image).unsqueeze(0).to(device)
with torch.no_grad():
logits = model(input_tensor)
probs = F.softmax(logits[:, :7], dim=1).cpu()
return draw_bar_chart(
{
"class": LABELS,
"probs": probs[0] * 100,
}
)
def draw_bar_chart(data: dict[str, list[str | float]]):
classes = data["class"]
probabilities = data["probs"]
fig, ax = plt.subplots(figsize=(8, 6))
ax.bar(classes, probabilities, color="skyblue")
ax.set_xlabel("Class")
ax.set_ylabel("Probability (%)")
ax.set_title("Class Probability")
for i, prob in enumerate(probabilities):
ax.text(i, prob + 0.01, f"{prob:.2f}%", ha="center", va="bottom")
fig.tight_layout()
return fig
def choose_example(imgpath: str) -> gr.Image:
img = Image.open(imgpath)
width, height = img.size
ratio = 512 / max(width, height)
img = img.resize((int(width * ratio), int(height * ratio)))
return gr.Image(value=img, label="輸入影像(不支援 SVG 格式)", type="pil")
def get_layout():
css = """
.main-title {
font-size: 24px;
font-weight: bold;
text-align: center;
margin-bottom: 20px;
}
.reference {
text-align: center;
font-size: 1.2em;
color: #d1d5db;
margin-bottom: 20px;
}
.reference a {
color: #FB923C;
text-decoration: none;
}
.reference a:hover {
text-decoration: underline;
color: #FB923C;
}
.title {
border-bottom: 1px solid;
}
.footer {
text-align: center;
margin-top: 30px;
padding-top: 20px;
border-top: 1px solid #ddd;
color: #d1d5db;
font-size: 14px;
}
.example-image {
height: 220px;
padding: 25px;
}
"""
theme = gr.themes.Base(
primary_hue="orange",
secondary_hue="cyan",
neutral_hue="gray",
).set(
body_text_color='*neutral_100',
body_text_color_subdued='*neutral_600',
background_fill_primary='*neutral_950',
background_fill_secondary='*neutral_600',
border_color_accent='*secondary_800',
color_accent='*primary_50',
color_accent_soft='*secondary_800',
code_background_fill='*neutral_700',
block_background_fill_dark='*body_background_fill',
block_info_text_color='#6b7280',
block_label_text_color='*neutral_300',
block_label_text_weight='700',
block_title_text_color='*block_label_text_color',
block_title_text_weight='300',
panel_background_fill='*neutral_800',
table_text_color_dark='*secondary_800',
checkbox_background_color_selected='*primary_500',
checkbox_label_background_fill='*neutral_500',
checkbox_label_background_fill_hover='*neutral_700',
checkbox_label_text_color='*neutral_200',
input_background_fill='*neutral_700',
input_background_fill_focus='*neutral_600',
slider_color='*primary_500',
table_even_background_fill='*neutral_700',
table_odd_background_fill='*neutral_600',
table_row_focus='*neutral_800'
)
with gr.Blocks(css=css, theme=theme) as demo:
with gr.Column():
gr.HTML(
value=(
'<div class="main-title">Litton7景觀分類模型</div>'
'<div class="reference">引用資料:'
'<a href="https://www.airitilibrary.com/Article/Detail/10125434-N202406210003-00003" target="_blank">'
"何立智、李沁築、邱浩修(2024)。Litton7:Litton視覺景觀分類深度學習模型。戶外遊憩研究,37(2)"
"</a>"
"</div>"
),
)
with gr.Row(equal_height=True):
with gr.Group():
img = gr.Image(label="上傳影像", type="pil", height="256px")
gr.Label("範例影像", show_label=False)
with gr.Row():
ex1 = gr.Image(
value="examples/beach.jpg",
show_label=False,
type="filepath",
elem_classes="example-image",
interactive=False,
show_download_button=False,
show_fullscreen_button=False,
show_share_button=False,
)
ex2 = gr.Image(
value="examples/field.jpg",
show_label=False,
type="filepath",
elem_classes="example-image",
interactive=False,
show_download_button=False,
show_fullscreen_button=False,
show_share_button=False,
)
ex3 = gr.Image(
value="examples/sky.jpg",
show_label=False,
type="filepath",
elem_classes="example-image",
interactive=False,
show_download_button=False,
show_fullscreen_button=False,
show_share_button=False,
)
chart = gr.Plot(label="分類結果")
start_button = gr.Button("開始", variant="primary")
gr.HTML(
'<div class="footer">© 2024 LCL 版權所有<br>開發者:何立智、楊哲睿</div>',
)
start_button.click(
fn=predict,
inputs=img,
outputs=chart,
)
ex1.select(fn=choose_example, inputs=ex1, outputs=img)
ex2.select(fn=choose_example, inputs=ex2, outputs=img)
ex3.select(fn=choose_example, inputs=ex3, outputs=img)
return demo
if __name__ == "__main__":
get_layout().launch()
|