Spaces:
Sleeping
Sleeping
import torch | |
from torch_geometric.data import Dataset | |
from datasets.dataloader import DataLoader, DataListLoader | |
from datasets.moad import MOAD | |
from datasets.pdb import PDBSidechain | |
from datasets.pdbbind import NoiseTransform, PDBBind | |
from utils.utils import read_strings_from_txt | |
class CombineDatasets(Dataset): | |
def __init__(self, dataset1, dataset2): | |
super(CombineDatasets, self).__init__() | |
self.dataset1 = dataset1 | |
self.dataset2 = dataset2 | |
def len(self): | |
return len(self.dataset1) + len(self.dataset2) | |
def get(self, idx): | |
if idx < len(self.dataset1): | |
return self.dataset1[idx] | |
else: | |
return self.dataset2[idx - len(self.dataset1)] | |
def add_complexes(self, new_complex_list): | |
self.dataset1.add_complexes(new_complex_list) | |
def construct_loader(args, t_to_sigma, device): | |
val_dataset2 = None | |
transform = NoiseTransform(t_to_sigma=t_to_sigma, no_torsion=args.no_torsion, | |
all_atom=args.all_atoms, alpha=args.sampling_alpha, beta=args.sampling_beta, | |
include_miscellaneous_atoms=False if not hasattr(args, 'include_miscellaneous_atoms') else args.include_miscellaneous_atoms, | |
crop_beyond_cutoff=args.crop_beyond) | |
if args.triple_training: assert args.combined_training | |
sequences_to_embeddings = None | |
if args.dataset == 'pdbsidechain' or args.triple_training: | |
if args.pdbsidechain_esm_embeddings_path is not None: | |
print('Loading ESM embeddings') | |
id_to_embeddings = torch.load(args.pdbsidechain_esm_embeddings_path) | |
sequences_list = read_strings_from_txt(args.pdbsidechain_esm_embeddings_sequences_path) | |
sequences_to_embeddings = {} | |
for i, seq in enumerate(sequences_list): | |
if str(i) in id_to_embeddings: | |
sequences_to_embeddings[seq] = id_to_embeddings[str(i)] | |
if args.dataset == 'pdbsidechain' or args.triple_training: | |
common_args = {'root': args.pdbsidechain_dir, 'transform': transform, 'limit_complexes': args.limit_complexes, | |
'receptor_radius': args.receptor_radius, | |
'c_alpha_max_neighbors': args.c_alpha_max_neighbors, | |
'remove_hs': args.remove_hs, 'num_workers': args.num_workers, 'all_atoms': args.all_atoms, | |
'atom_radius': args.atom_radius, 'atom_max_neighbors': args.atom_max_neighbors, | |
'knn_only_graph': not args.not_knn_only_graph, 'sequences_to_embeddings': sequences_to_embeddings, | |
'vandermers_max_dist': args.vandermers_max_dist, | |
'vandermers_buffer_residue_num': args.vandermers_buffer_residue_num, | |
'vandermers_min_contacts': args.vandermers_min_contacts, | |
'remove_second_segment': args.remove_second_segment, | |
'merge_clusters': args.merge_clusters} | |
train_dataset3 = PDBSidechain(cache_path=args.cache_path, split='train', multiplicity=args.train_multiplicity, **common_args) | |
if args.dataset == 'pdbsidechain': | |
train_dataset = train_dataset3 | |
val_dataset = PDBSidechain(cache_path=args.cache_path, split='val', multiplicity=args.val_multiplicity, **common_args) | |
loader_class = DataListLoader if torch.cuda.is_available() else DataLoader | |
if args.dataset in ['pdbbind', 'moad', 'generalisation', 'distillation']: | |
common_args = {'transform': transform, 'limit_complexes': args.limit_complexes, | |
'chain_cutoff': args.chain_cutoff, 'receptor_radius': args.receptor_radius, | |
'c_alpha_max_neighbors': args.c_alpha_max_neighbors, | |
'remove_hs': args.remove_hs, 'max_lig_size': args.max_lig_size, | |
'matching': not args.no_torsion, 'popsize': args.matching_popsize, 'maxiter': args.matching_maxiter, | |
'num_workers': args.num_workers, 'all_atoms': args.all_atoms, | |
'atom_radius': args.atom_radius, 'atom_max_neighbors': args.atom_max_neighbors, | |
'knn_only_graph': False if not hasattr(args, 'not_knn_only_graph') else not args.not_knn_only_graph, | |
'include_miscellaneous_atoms': False if not hasattr(args, 'include_miscellaneous_atoms') else args.include_miscellaneous_atoms, | |
'matching_tries': args.matching_tries} | |
if args.dataset == 'pdbbind' or args.dataset == 'generalisation' or args.combined_training: | |
train_dataset = PDBBind(cache_path=args.cache_path, split_path=args.split_train, keep_original=True, | |
num_conformers=args.num_conformers, root=args.pdbbind_dir, | |
esm_embeddings_path=args.pdbbind_esm_embeddings_path, | |
protein_file=args.protein_file, **common_args) | |
if args.dataset == 'moad' or args.combined_training: | |
train_dataset2 = MOAD(cache_path=args.cache_path, split='train', keep_original=True, | |
num_conformers=args.num_conformers, max_receptor_size=args.max_receptor_size, | |
remove_promiscuous_targets=args.remove_promiscuous_targets, min_ligand_size=args.min_ligand_size, | |
multiplicity= args.train_multiplicity, unroll_clusters=args.unroll_clusters, | |
esm_embeddings_sequences_path=args.moad_esm_embeddings_sequences_path, | |
root=args.moad_dir, esm_embeddings_path=args.moad_esm_embeddings_path, | |
enforce_timesplit=args.enforce_timesplit, **common_args) | |
if args.combined_training: | |
train_dataset = CombineDatasets(train_dataset2, train_dataset) | |
if args.triple_training: | |
train_dataset = CombineDatasets(train_dataset, train_dataset3) | |
else: | |
train_dataset = train_dataset2 | |
if args.dataset == 'pdbbind' or args.double_val: | |
val_dataset = PDBBind(cache_path=args.cache_path, split_path=args.split_val, keep_original=True, | |
esm_embeddings_path=args.pdbbind_esm_embeddings_path, root=args.pdbbind_dir, | |
protein_file=args.protein_file, require_ligand=True, **common_args) | |
if args.double_val: | |
val_dataset2 = val_dataset | |
if args.dataset == 'moad' or args.dataset == 'generalisation': | |
val_dataset = MOAD(cache_path=args.cache_path, split='val', keep_original=True, | |
multiplicity= args.val_multiplicity, max_receptor_size=args.max_receptor_size, | |
remove_promiscuous_targets=args.remove_promiscuous_targets, min_ligand_size=args.min_ligand_size, | |
esm_embeddings_sequences_path=args.moad_esm_embeddings_sequences_path, | |
unroll_clusters=args.unroll_clusters, root=args.moad_dir, | |
esm_embeddings_path=args.moad_esm_embeddings_path, require_ligand=True, **common_args) | |
loader_class = DataListLoader if torch.cuda.is_available() else DataLoader | |
train_loader = loader_class(dataset=train_dataset, batch_size=args.batch_size, num_workers=args.num_dataloader_workers, shuffle=True, pin_memory=args.pin_memory, drop_last=args.dataloader_drop_last) | |
val_loader = loader_class(dataset=val_dataset, batch_size=args.batch_size, num_workers=args.num_dataloader_workers, shuffle=False, pin_memory=args.pin_memory, drop_last=args.dataloader_drop_last) | |
return train_loader, val_loader, val_dataset2 | |