Spaces:
Sleeping
Sleeping
File size: 4,801 Bytes
9439b9b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 |
import torch
from torch import nn
ACTIVATIONS = {
'relu': nn.ReLU,
'silu': nn.SiLU
}
def FCBlock(in_dim, hidden_dim, out_dim, layers, dropout, activation='relu'):
activation = ACTIVATIONS[activation]
assert layers >= 2
sequential = [nn.Linear(in_dim, hidden_dim), activation(), nn.Dropout(dropout)]
for i in range(layers - 2):
sequential += [nn.Linear(hidden_dim, hidden_dim), activation(), nn.Dropout(dropout)]
sequential += [nn.Linear(hidden_dim, out_dim)]
return nn.Sequential(*sequential)
class GaussianSmearing(torch.nn.Module):
# used to embed the edge distances
def __init__(self, start=0.0, stop=5.0, num_gaussians=50):
super().__init__()
offset = torch.linspace(start, stop, num_gaussians)
self.coeff = -0.5 / (offset[1] - offset[0]).item() ** 2
self.register_buffer('offset', offset)
def forward(self, dist):
dist = dist.view(-1, 1) - self.offset.view(1, -1)
return torch.exp(self.coeff * torch.pow(dist, 2))
class AtomEncoder(torch.nn.Module):
def __init__(self, emb_dim, feature_dims, sigma_embed_dim, lm_embedding_dim=0):
"""
Parameters
----------
emb_dim
feature_dims
first element of feature_dims tuple is a list with the length of each categorical feature,
and the second is the number of scalar features
sigma_embed_dim
lm_embedding_dim
"""
#
super(AtomEncoder, self).__init__()
self.atom_embedding_list = torch.nn.ModuleList()
self.num_categorical_features = len(feature_dims[0])
self.additional_features_dim = feature_dims[1] + sigma_embed_dim + lm_embedding_dim
for i, dim in enumerate(feature_dims[0]):
emb = torch.nn.Embedding(dim, emb_dim)
torch.nn.init.xavier_uniform_(emb.weight.data)
self.atom_embedding_list.append(emb)
if self.additional_features_dim > 0:
self.additional_features_embedder = torch.nn.Linear(self.additional_features_dim + emb_dim, emb_dim)
def forward(self, x):
x_embedding = 0
assert x.shape[1] == self.num_categorical_features + self.additional_features_dim
for i in range(self.num_categorical_features):
x_embedding += self.atom_embedding_list[i](x[:, i].long())
if self.additional_features_dim > 0:
x_embedding = self.additional_features_embedder(torch.cat([x_embedding, x[:, self.num_categorical_features:]], axis=1))
return x_embedding
class OldAtomEncoder(torch.nn.Module):
def __init__(self, emb_dim, feature_dims, sigma_embed_dim, lm_embedding_type=None):
"""
Parameters
----------
emb_dim
feature_dims
first element of feature_dims tuple is a list with the length of each categorical feature,
and the second is the number of scalar features
sigma_embed_dim
lm_embedding_type
"""
#
super(OldAtomEncoder, self).__init__()
self.atom_embedding_list = torch.nn.ModuleList()
self.num_categorical_features = len(feature_dims[0])
self.num_scalar_features = feature_dims[1] + sigma_embed_dim
self.lm_embedding_type = lm_embedding_type
for i, dim in enumerate(feature_dims[0]):
emb = torch.nn.Embedding(dim, emb_dim)
torch.nn.init.xavier_uniform_(emb.weight.data)
self.atom_embedding_list.append(emb)
if self.num_scalar_features > 0:
self.linear = torch.nn.Linear(self.num_scalar_features, emb_dim)
if self.lm_embedding_type is not None:
if self.lm_embedding_type == 'esm':
self.lm_embedding_dim = 1280
else: raise ValueError('LM Embedding type was not correctly determined. LM embedding type: ', self.lm_embedding_type)
self.lm_embedding_layer = torch.nn.Linear(self.lm_embedding_dim + emb_dim, emb_dim)
def forward(self, x):
x_embedding = 0
if self.lm_embedding_type is not None:
assert x.shape[1] == self.num_categorical_features + self.num_scalar_features + self.lm_embedding_dim
else:
assert x.shape[1] == self.num_categorical_features + self.num_scalar_features
for i in range(self.num_categorical_features):
x_embedding += self.atom_embedding_list[i](x[:, i].long())
if self.num_scalar_features > 0:
x_embedding += self.linear(x[:, self.num_categorical_features:self.num_categorical_features + self.num_scalar_features])
if self.lm_embedding_type is not None:
x_embedding = self.lm_embedding_layer(torch.cat([x_embedding, x[:, -self.lm_embedding_dim:]], axis=1))
return x_embedding
|