File size: 42,960 Bytes
9439b9b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
import logging
import subprocess
import sys
from argparse import ArgumentParser, Namespace, FileType
import copy
import itertools
import os
from datetime import datetime
from pathlib import Path
from functools import partial, cache
import warnings
import yaml
from Bio.PDB import PDBParser
from sklearn.cluster import DBSCAN

from src import const
from src.datasets import (
    collate_with_fragment_without_pocket_edges, get_dataloader, get_one_hot, parse_molecule, ProteinConditionedDataset
)
from src.lightning import DDPM
from src.linker_size_lightning import SizeClassifier
from src.utils import set_deterministic, FoundNaNException
from src.visualizer import save_sdf

# Ignore pandas deprecation warning around pyarrow
warnings.filterwarnings("ignore", category=DeprecationWarning,
                        message="(?s).*Pyarrow will become a required dependency of pandas.*")
import numpy as np
import pandas as pd
from pandarallel import pandarallel
import torch
from torch_geometric.loader import DataLoader

from Bio import SeqIO
from rdkit import RDLogger, Chem
from rdkit.Chem import RemoveAllHs

# TODO imports are a little odd, utils seems to shadow things
from utils.logging_utils import configure_logger, get_logger
from datasets.process_mols import create_mol_with_coords, read_molecule
from utils.diffusion_utils import t_to_sigma as t_to_sigma_compl, get_t_schedule
from utils.inference_utils import InferenceDataset
from utils.sampling import randomize_position, sampling
from utils.utils import get_model
from utils.visualise import PDBFile
from tqdm import tqdm

RDLogger.DisableLog('rdApp.*')
warnings.filterwarnings("ignore", category=UserWarning,
                        message="The TorchScript type system doesn't support instance-level annotations on"
                                " empty non-base types in `__init__`")

# Prody logging is very verbose by default
prody_logger = logging.getLogger(".prody")
prody_logger.setLevel(logging.ERROR)

# Pandarallel initialization
nb_workers = os.cpu_count()
progress_bar = False
if hasattr(sys, 'gettrace') and sys.gettrace() is not None:  # Debug mode
    nb_workers = 1
    progress_bar = True
pandarallel.initialize(nb_workers=nb_workers, progress_bar=progress_bar)


def read_compound_library(file_path):
    df = None
    if file_path.suffix == '.csv':
        df = pd.read_csv(file_path)
    elif file_path.suffix == '.sdf':
        supplier = Chem.SDMolSupplier(file_path, sanitize=False, removeHs=False)
        # Convert to a dataframe
        df = pd.DataFrame([{'X1': Chem.MolToSmiles(mol), 'ID1': mol.GetProp('_Name')} for mol in supplier])
        # Use InChiKey as ID1 if None
        df.loc[df['ID1'].isna(), 'ID1'] = df.loc[
            df['ID1'].isna(), 'X1'
        ].apply(Chem.MolFromSmiles).apply(Chem.MolToInchiKey)

    return df

def read_protein_library(file_path):
    df = None
    if file_path.suffix == '.csv':
        df = pd.read_csv(file_path)
    elif file_path.suffix == '.fasta':
        records = list(SeqIO.parse(file_path, 'fasta'))
        df = pd.DataFrame([{'X2': str(record.seq), 'ID2': record.id} for record in records])

    return df

def process_fragment_library(df):
    """
    SMILES strings with separators (e.g., .) represent distinct molecular entities, such as ligands, ions, or
    co-crystallized molecules. Splitting them ensures that each entity is treated individually, allowing focused
    analysis of their roles in binding. Single atom fragments (e.g., counterions like [I-] or [Cl-] are irrelevant in
    docking and are to be removed. This filtering focuses on structurally relevant fragments.
    """
    # Get subset of rows with SMILES containing separators
    fragmented_rows = df['X1'].str.contains('.', regex=False)
    df_fragmented = df[fragmented_rows].copy()

    # Split SMILES into lists and expand
    df_fragmented['X1'] = df_fragmented['X1'].str.split('.')
    df_fragmented = df_fragmented.explode('X1').reset_index(drop=True)

    # Append fragment index as alphabet (A, B, C... AA, AB...) to ID1 for rows with fragmented SMILES
    df_fragmented['ID1'] = df_fragmented.groupby('ID1').cumcount().apply(num_to_letter_code).radd(
        df_fragmented['ID1'] + '_')
    df = pd.concat([df[~fragmented_rows], df_fragmented]).sort_index().reset_index(drop=True)
    df['mol'] = df['X1'].apply(read_molecule, remove_confs=True)
    df = df.dropna(subset=['mol'])

    # # Remove fragments with no carbon atoms
    # df = df[df['mol'].swifter.apply(lambda mol: any(atom.GetSymbol() == 'C' for atom in mol.GetAtoms()))]
    # Remove single-atom fragments
    df = df[df['mol'].apply(lambda mol: mol.GetNumAtoms() > 1)]
    # Canonicalize SMILES
    df['X1'] = df['mol'].apply(lambda x: Chem.MolToSmiles(x))

    return df


def check_one_to_one(df, ID_column, X_column):
    # Check for multiple X values for the same ID
    id_to_x_conflicts = df.groupby(ID_column)[X_column].nunique()
    conflicting_ids = id_to_x_conflicts[id_to_x_conflicts > 1]

    # Check for multiple ID values for the same X
    x_to_id_conflicts = df.groupby(X_column)[ID_column].nunique()
    conflicting_xs = x_to_id_conflicts[x_to_id_conflicts > 1]

    # Print conflicting mappings
    if not conflicting_ids.empty:
        print(f"Conflicting {ID_column} -> multiple {X_column}:")
        for idx in conflicting_ids.index:
            print(f"{ID_column}: {idx}, {X_column} values: {df[df[ID_column] == idx][X_column].unique()}")

    if not conflicting_xs.empty:
        print(f"Conflicting {X_column} -> multiple {ID_column}:")
        for x in conflicting_xs.index:
            print(f"{X_column}: {x}, {ID_column} values: {df[df[X_column] == x][ID_column].unique()}")

    # Return whether the mappings are one-to-one
    return conflicting_ids.empty and conflicting_xs.empty


def num_to_letter_code(n):
    result = ''
    while n >= 0:
        result = chr(65 + (n % 26)) + result
        n = n // 26 - 1
    return result


def dock_fragments(args):
    with open(Path(args.score_ckpt).parent / 'model_parameters.yml') as f:
        score_model_args = Namespace(**yaml.full_load(f))
    if args.confidence_ckpt is not None:
        with open(Path(args.confidence_ckpt).parent / 'model_parameters.yml') as f:
            confidence_args = Namespace(**yaml.full_load(f))
    log.info(f"DiffFragDock will run on {device}")
    
    docking_out_dir = Path(args.out_dir, 'docking')
    docking_out_dir.mkdir(parents=True, exist_ok=True)
    if args.protein_ligand_csv is not None:
        csv_path = Path(args.protein_ligand_csv)
        assert csv_path.is_file(), f"File {args.protein_ligand_csv} does not exist"
        df = pd.read_csv(csv_path)
        df = process_fragment_library(df)
    else:
        assert args.X1 is not None and args.X2 is not None, "Either a .csv file or `X1` and `X2` must be provided."

        compound_df = pd.DataFrame(columns=['X1', 'ID1'])
        if Path(args.X1).is_file():
            compound_path = Path(args.X1)
            if compound_path.suffix in ['.csv', '.sdf']:
                compound_df[['X1', 'ID1']] = read_compound_library(compound_path)[['X1', 'ID1']]
            else:
                compound_df['X1'] = [compound_path]
                compound_df['ID1'] = [compound_path.stem]
        else:
            compound_df['X1'] = [args.X1]
            compound_df['ID1'] = 'compound_0'
        compound_df.dropna(subset=['X1'], inplace=True)
        compound_df.loc[compound_df['ID1'].isna(), 'ID1'] = compound_df.loc[compound_df['ID1'].isna(), 'X1'].apply(
            lambda x: Chem.MolToInchiKey(Chem.MolFromSmiles(x))
        )

        protein_df = pd.DataFrame(columns=['X2', 'ID2'])
        if Path(args.X2).is_file():
            protein_path = Path(args.X2)
            if protein_path.suffix in ['.csv', '.fasta']:
                protein_df[['X2', 'ID2']] = read_protein_library(protein_path)[['X2', 'ID2']]
            else:
                protein_df['protein_path'] = [protein_path]
                protein_df['ID2'] = [protein_path.stem]
        else:
            protein_df['X2'] = [args.X2]
            protein_df['ID2'] = 'protein_0'
        protein_df.dropna(subset=['X2'], inplace=True)
        protein_df.loc[protein_df['ID2'].isna(), 'ID2'] = [
            f"protein_{i}" for i in range(protein_df['ID2'].isna().sum())
        ]

        compound_df = process_fragment_library(compound_df)
        df = compound_df.merge(protein_df, how='cross')

    # Identify duplicates based on 'X1' and 'X2'
    duplicates = df[df.duplicated(subset=['X1', 'X2'], keep=False)]
    if not duplicates.empty:
        print("Duplicate rows based on columns 'X1' and 'X2':\n", duplicates[['ID1', 'X1', 'ID2', 'X2']])
        print("Keeping the first occurrence of each duplicate.")
    df = df.drop_duplicates(subset=['X1', 'X2'])
    df['name'] = df['ID2'] + '-' + df['ID1']

    df = df.replace({pd.NA: None})
    # Check unique mappings between IDn and Xn
    assert check_one_to_one(df, 'ID1', 'X1'), "ID1-X1 mapping is not one-to-one."
    assert check_one_to_one(df, 'ID2', 'X2'), "ID2-X2 mapping is not one-to-one."

    """
    Docking phase
    """

    # preprocessing of complexes into geometric graphs
    test_dataset = InferenceDataset(
        df=df, out_dir=args.out_dir,
        lm_embeddings=True,
        receptor_radius=score_model_args.receptor_radius,
        remove_hs=True,  # score_model_args.remove_hs,
        c_alpha_max_neighbors=score_model_args.c_alpha_max_neighbors,
        all_atoms=score_model_args.all_atoms, atom_radius=score_model_args.atom_radius,
        atom_max_neighbors=score_model_args.atom_max_neighbors,
        knn_only_graph=False if not hasattr(score_model_args, 'not_knn_only_graph')
        else not score_model_args.not_knn_only_graph
    )
    test_loader = DataLoader(dataset=test_dataset, batch_size=1, shuffle=False)

    if args.confidence_ckpt is not None and not confidence_args.use_original_model_cache:
        log.info('Confidence model uses different type of graphs than the score model. '
                    'Loading (or creating if not existing) the data for the confidence model now.')
        confidence_test_dataset = InferenceDataset(
            df=df, out_dir=args.out_dir,
            lm_embeddings=True,
            receptor_radius=confidence_args.receptor_radius,
            remove_hs=True,  # confidence_args.remove_hs,
            c_alpha_max_neighbors=confidence_args.c_alpha_max_neighbors,
            all_atoms=confidence_args.all_atoms,
            atom_radius=confidence_args.atom_radius,
            atom_max_neighbors=confidence_args.atom_max_neighbors,
            precomputed_lm_embeddings=test_dataset.lm_embeddings,
            knn_only_graph=False if not hasattr(score_model_args, 'not_knn_only_graph')
            else not score_model_args.not_knn_only_graph
        )
    else:
        confidence_test_dataset = None

    t_to_sigma = partial(t_to_sigma_compl, args=score_model_args)

    model = get_model(score_model_args, device, t_to_sigma=t_to_sigma, no_parallel=True, old=args.old_score_model)
    state_dict = torch.load(Path(args.score_ckpt), map_location='cpu', weights_only=True)
    model.load_state_dict(state_dict, strict=True)
    model = model.to(device)
    model.eval()

    if args.confidence_ckpt is not None:
        confidence_model = get_model(confidence_args, device, t_to_sigma=t_to_sigma, no_parallel=True,
                                     confidence_mode=True, old=args.old_confidence_model)
        state_dict = torch.load(Path(args.confidence_ckpt), map_location='cpu', weights_only=True)
        confidence_model.load_state_dict(state_dict, strict=True)
        confidence_model = confidence_model.to(device)
        confidence_model.eval()
    else:
        confidence_model = None
        confidence_args = None

    tr_schedule = get_t_schedule(inference_steps=args.inference_steps, sigma_schedule='expbeta')

    failures, skipped = 0, 0
    samples_per_complex = args.samples_per_complex
    test_ds_size = len(test_dataset)
    df = test_loader.dataset.df
    docking_dfs = []
    log.info(f'Size of fragment dataset: {test_ds_size}')
    for idx, orig_complex_graph in tqdm(enumerate(test_loader), total=test_ds_size):
        if not orig_complex_graph.success[0]:
            skipped += 1
            log.warning(
                f"The test dataset did not contain {df['name'].iloc[idx]}"
                f" for {df['X1'].iloc[idx]} and {df['X2'].iloc[idx]}. We are skipping this complex.")
            continue
        try:
            if confidence_test_dataset is not None:
                confidence_complex_graph = confidence_test_dataset[idx]
                if not confidence_complex_graph.success:
                    skipped += 1
                    log.warning(
                        f"The confidence dataset did not contain {orig_complex_graph.name}. We are skipping this complex.")
                    continue
                confidence_data_list = [copy.deepcopy(confidence_complex_graph) for _ in range(samples_per_complex)]
            else:
                confidence_data_list = None
            data_list = [copy.deepcopy(orig_complex_graph) for _ in range(samples_per_complex)]
            randomize_position(data_list, score_model_args.no_torsion, False, score_model_args.tr_sigma_max,
                               initial_noise_std_proportion=args.initial_noise_std_proportion,
                               choose_residue=args.choose_residue)

            lig = orig_complex_graph.mol[0]

            # initialize visualisation
            if args.save_visualisation:
                visualization_list = []
                for graph in data_list:
                    pdb = PDBFile(lig)
                    pdb.add(lig, 0, 0)
                    pdb.add((orig_complex_graph['ligand'].pos + orig_complex_graph.original_center).detach().cpu(), 1,
                            0)
                    pdb.add((graph['ligand'].pos + graph.original_center).detach().cpu(), part=1, order=1)
                    visualization_list.append(pdb)
            else:
                visualization_list = None

            # run reverse diffusion
            data_list, confidence = sampling(data_list=data_list, model=model,
                                             inference_steps=args.actual_steps if args.actual_steps is not None
                                             else args.inference_steps,
                                             tr_schedule=tr_schedule, rot_schedule=tr_schedule,
                                             tor_schedule=tr_schedule,
                                             device=device, t_to_sigma=t_to_sigma, model_args=score_model_args,
                                             visualization_list=visualization_list, confidence_model=confidence_model,
                                             confidence_data_list=confidence_data_list,
                                             confidence_model_args=confidence_args,
                                             batch_size=args.n_poses, no_final_step_noise=args.no_final_step_noise,
                                             temp_sampling=[args.temp_sampling_tr, args.temp_sampling_rot,
                                                            args.temp_sampling_tor],
                                             temp_psi=[args.temp_psi_tr, args.temp_psi_rot, args.temp_psi_tor],
                                             temp_sigma_data=[args.temp_sigma_data_tr, args.temp_sigma_data_rot,
                                                              args.temp_sigma_data_tor])

            ligand_pos = np.asarray(
                [complex_graph['ligand'].pos.cpu().numpy() + orig_complex_graph.original_center.cpu().numpy() for
                 complex_graph in data_list]
            )

            # save predictions
            n_samples = len(confidence)
            sample_df = pd.DataFrame([df.iloc[idx]] * n_samples)
            confidence = confidence[:, 0].cpu().numpy()
            sample_df['confidence'] = confidence
            if args.save_docking:
                sample_df['path'] = [
                    Path(
                        docking_out_dir, f"{df['name'].iloc[idx]}-confidence{confidence[i]:.2f}.sdf"
                    ) for i in range(n_samples)
                ]
            sample_df['ligand_mol']= [
                create_mol_with_coords(
                    mol=RemoveAllHs(copy.deepcopy(lig)),
                    new_coords=pos,
                    path=sample_df['path'].iloc[i] if args.save_docking else None
                ) for i, pos in enumerate(ligand_pos)
            ]
            # sample_df['ligand_pos'] = list(ligand_pos)
            docking_dfs.append(sample_df)

            # write_dir = f"{args.out_dir}/{df['name'].iloc[idx]}"
            # for rank, pos in enumerate(ligand_pos):
            #     mol_pred = copy.deepcopy(lig)
            #     if score_model_args.remove_hs: mol_pred = RemoveAllHs(mol_pred)
            #     if rank == 0: write_mol_with_coords(mol_pred, pos, Path(write_dir, f'rank{rank + 1}.sdf'))
            #     write_mol_with_coords(mol_pred, pos,
            #                           Path(write_dir, f'rank{rank + 1}_confidence{confidence[rank]:.2f}.sdf'))
            # save visualisation frames
            # if args.save_visualisation:
            #     if confidence is not None:
            #         for rank, batch_idx in enumerate(re_order):
            #             visualization_list[batch_idx].write(
            #                 Path(write_dir, f'rank{rank + 1}_reverseprocess.pdb'))
            #     else:
            #         for rank, batch_idx in enumerate(ligand_pos):
            #             visualization_list[batch_idx].write(
            #                 Path(write_dir, f'rank{rank + 1}_reverseprocess.pdb'))

        except Exception as e:
            log.warning("Failed on", orig_complex_graph["name"], e)
            failures += 1

    # Tear down DiffDock models and datasets
    model.cpu()
    del model
    if confidence_model is not None:
        confidence_model.cpu()
        del confidence_model
    del test_dataset
    if confidence_test_dataset is not None:
        del confidence_test_dataset
    del test_loader

    docking_df = pd.concat(docking_dfs, ignore_index=True)
    result_msg = f"""
    Failed for {failures} / {test_ds_size} complexes.
    Skipped {skipped} / {test_ds_size} complexes.
    """
    if failures or skipped:
        log.warning(result_msg)
    else:
        log.info(result_msg)
    log.info(f"Results saved in {docking_out_dir}")

    return docking_df


def calculate_mol_atomic_distances(mol1, mol2, distance_type='min'):
    mol1_coords = [
        mol1.GetConformer().GetAtomPosition(i) for i in range(mol1.GetNumAtoms())
    ]
    mol2_coords = [
        mol2.GetConformer().GetAtomPosition(i) for i in range(mol2.GetNumAtoms())
    ]
    # Ensure numpy arrays
    mol1_coords = np.array(mol1_coords)
    mol2_coords = np.array(mol2_coords)

    # Compute pairwise distances between carbon atoms
    atom_pairwise_distances = np.linalg.norm(mol1_coords[:, None, :] - mol2_coords[None, :, :], axis=-1)
    # if np.any(np.isnan(atom_pairwise_distances)):
    #     import pdb
    #     pdb.set_trace()  # Trigger a breakpoint if NaN is found
    if distance_type == 'min':
        return atom_pairwise_distances.min()
    elif distance_type == 'mean':
        return atom_pairwise_distances.mean()
    elif distance_type is None:
        return atom_pairwise_distances
    else:
        raise ValueError(f"Unsupported distance_type: {distance_type}")


def process_docking_results(
        df,
        eps=5,  # Distance threshold for DBSCAN clustering
        min_samples=5, # Minimum number of samples for a cluster (enrichment)
        frag_dist_range=(2, 5),  # Distance range for fragment linking
        distance_type='min',  # Type of distance to compute between fragments
):
    assert len(frag_dist_range) == 2, 'Distance range must be a tuple of two values in Angstroms (Å).'
    frag_dist_range = sorted(frag_dist_range)

    # The mols in df should have been processed to have no explicit hydrogens, except heavy hydrogen isotopes.
    docking_summaries = []  # For saving intermediate docking results
    fragment_combos = []  # Fragment pairs for the linking step
    # 1. Cluster docking poses
    # Compute pairwise distances of molecules defined by the closest non-heavy atoms
    for protein, protein_df in df.groupby('X2'):
        protein_id = protein_df['ID2'].iloc[0]
        protein_path = protein_df['protein_path'].iloc[0]
        protein_df['index'] = protein_df.index

        log.info(f'Processing docking results for {protein_id}...')
        protein_fragment_combos = []
        dist_matrix = np.stack(
            protein_df['ligand_mol'].parallel_apply(
                lambda mol1: [
                    calculate_mol_atomic_distances(mol1, mol2, distance_type=distance_type)
                    for mol2 in protein_df['ligand_mol']
                ]
            )
        )

        # Perform DBSCAN clustering
        dbscan = DBSCAN(eps=eps, min_samples=min_samples, metric='precomputed')
        protein_df['cluster'] = dbscan.fit_predict(dist_matrix)
        protein_df = protein_df.sort_values(
            by=['X1', 'cluster', 'confidence'], ascending=[True, True, False]
        )
        # Add conformer number to ID1
        protein_df.groupby('ID1').cumcount().astype(str).radd(protein_df['ID1'] + '_')
        if args.save_docking:
            docking_summaries.append(
                protein_df[['name', 'ID2', 'X2', 'ID1', 'X1', 'cluster', 'confidence', 'path']]
            )
        # Filter out outlier poses
        protein_df = protein_df[protein_df['cluster'] != -1]
        # Keep only the highest confidence pose per protein per ligand per cluster
        protein_df = protein_df.groupby(['X1', 'cluster']).first().reset_index()

        # 2. Create fragment-linking pairs
        for cluster, cluster_df in protein_df.groupby('cluster'):
            if len(cluster_df) > 1:  # Skip clusters with only one pose
                pairs = list(itertools.combinations(cluster_df['index'], 2))
                for i, j in pairs:
                    row1 = cluster_df[cluster_df['index'] == i].iloc[0]
                    row2 = cluster_df[cluster_df['index'] == j].iloc[0]
                    dist = dist_matrix[i, j]
                    # Check if intermolecular distance is within the range
                    if frag_dist_range[0] < dist < frag_dist_range[1]:
                        combined_smiles = f"{row1['X1']}.{row2['X1']}"
                        combined_mol = Chem.CombineMols(row1['ligand_mol'], row2['ligand_mol'])
                        complex_name = f"{protein_id}-{row1['ID1']}-{row2['ID1']}"
                        ligand_path = f"{row1['path']},{row2['path']}"
                        protein_fragment_combos.append(
                            (complex_name, protein, protein_path, combined_smiles, ligand_path, combined_mol, dist)
                        )
        log.info(f'Number of fragment pairs for {protein_id}: {len(protein_fragment_combos)}.')
        fragment_combos.extend(protein_fragment_combos)

    # Save intermediate docking results
    if args.save_docking:
        docking_summary_df = pd.concat(docking_summaries, ignore_index=True)
        docking_summary_df.to_csv(Path(args.out_dir, 'docking_summary.csv'), index=False)
    log.info(f'Saved intermediate docking results to {args.out_dir}')

    # Convert fragment pair results to DataFrame
    if fragment_combos:
        linking_df = pd.DataFrame(
            fragment_combos, columns=['name', 'X2', 'protein_path', 'X1', 'ligand_path', 'ligand_mol', 'distance']
        )
        linking_df[
            ['name', 'X2', 'protein_path', 'X1', 'ligand_path', 'distance']
        ].to_csv(Path(args.out_dir, 'linking_summary.csv'), index=False)
        return linking_df
    else:
        raise ValueError('No eligible fragment pairs found for linking.')

def get_pocket(mol, pdb_path, backbone_atoms_only=False):
    struct = PDBParser().get_structure('', pdb_path)
    residue_ids = []
    atom_coords = []

    for residue in struct.get_residues():
        resid = residue.get_id()[1]
        for atom in residue.get_atoms():
            atom_coords.append(atom.get_coord())
            residue_ids.append(resid)

    residue_ids = np.array(residue_ids)
    atom_coords = np.array(atom_coords)
    mol_atom_coords = mol.GetConformer().GetPositions()

    distances = np.linalg.norm(atom_coords[:, None, :] - mol_atom_coords[None, :, :], axis=-1)
    contact_residues = np.unique(residue_ids[np.where(distances.min(1) <= 6)[0]])

    pocket_coords = []
    pocket_types = []

    for residue in struct.get_residues():
        resid = residue.get_id()[1]
        if resid not in contact_residues:
            continue

        for atom in residue.get_atoms():
            atom_name = atom.get_name()
            atom_type = atom.element.upper()
            atom_coord = atom.get_coord()

            if backbone_atoms_only and atom_name not in {'N', 'CA', 'C', 'O'}:
                continue

            pocket_coords.append(atom_coord.tolist())
            pocket_types.append(atom_type)

    pocket_pos = []
    pocket_one_hot = []
    pocket_charges = []

    for coord, atom_type in zip(pocket_coords, pocket_types):
        if atom_type not in const.GEOM_ATOM2IDX.keys():
            continue

        pocket_pos.append(coord)
        pocket_one_hot.append(get_one_hot(atom_type, const.GEOM_ATOM2IDX))
        pocket_charges.append(const.GEOM_CHARGES[atom_type])

    pocket_pos = np.array(pocket_pos)
    pocket_one_hot = np.array(pocket_one_hot)
    pocket_charges = np.array(pocket_charges)

    return pocket_pos, pocket_one_hot, pocket_charges


def generate_linker(
        df, backbone_atoms_only, model,
        output_dir, n_samples, n_steps, linker_size, anchors, max_batch_size, random_seed
):
    # Setup
    if random_seed is not None:
        set_deterministic(random_seed)
    output_dir = Path(output_dir, 'linking')
    output_dir.mkdir(exist_ok=True, parents=True)

    if linker_size.isdigit():
        print(f'Will generate linkers with {linker_size} atoms')
        linker_size = int(linker_size)

        def sample_fn(_data):
            return torch.ones(_data['positions'].shape[0], device=device, dtype=const.TORCH_INT) * linker_size

    else:
        boundaries = [x.strip() for x in linker_size.split(',')]
        if len(boundaries) == 2 and boundaries[0].isdigit() and boundaries[1].isdigit():
            left = int(boundaries[0])
            right = int(boundaries[1])
            print(f'Will generate linkers with numbers of atoms sampled from U({left}, {right})')

            def sample_fn(_data):
                shape = len(_data['positions']),
                return torch.randint(left, right + 1, shape, device=device, dtype=const.TORCH_INT)

        else:
            print(f'Will generate linkers with sampled numbers of atoms')
            size_classifier = SizeClassifier.load_from_checkpoint(linker_size, map_location=device).eval().to(device)

            def sample_fn(_data):
                out, _ = size_classifier.forward(_data, return_loss=False, with_pocket=True, adjust_shape=True)
                probabilities = torch.softmax(out, dim=1)
                distribution = torch.distributions.Categorical(probs=probabilities)
                samples = distribution.sample()
                sizes = []
                for label in samples.detach().cpu().numpy():
                    sizes.append(size_classifier.linker_id2size[label])
                sizes = torch.tensor(sizes, device=samples.device, dtype=const.TORCH_INT)
                return sizes

    if n_steps is not None:
        model.edm.T = n_steps

    if model.center_of_mass == 'anchors' and anchors is None:
        print(
            'Please pass anchor atoms indices '
            'or use another DiffLinker model that does not require information about anchors'
        )
        return

    cached_parse_molecule = cache(parse_molecule)
    dataset = []
    for i, row in df.iterrows():
        mol = row['ligand_mol']  # Hs already removed
        # Parsing fragments data
        frag_pos, frag_one_hot, frag_charges = cached_parse_molecule(mol, is_geom=ddpm.is_geom)
        # Parsing pocket data
        pocket_pos, pocket_one_hot, pocket_charges = get_pocket(mol, row['protein_path'], backbone_atoms_only)

        positions = np.concatenate([frag_pos, pocket_pos], axis=0)
        one_hot = np.concatenate([frag_one_hot, pocket_one_hot], axis=0)
        charges = np.concatenate([frag_charges, pocket_charges], axis=0)
        anchor_flags = np.zeros_like(charges)
        if anchors is not None:
            for anchor in anchors.split(','):
                anchor_flags[int(anchor.strip()) - 1] = 1

        fragment_only_mask = np.concatenate([
            np.ones_like(frag_charges),
            np.zeros_like(pocket_charges),
        ])
        pocket_mask = np.concatenate([
            np.zeros_like(frag_charges),
            np.ones_like(pocket_charges),
        ])
        linker_mask = np.concatenate([
            np.zeros_like(frag_charges),
            np.zeros_like(pocket_charges),
        ])
        fragment_mask = np.concatenate([
            np.ones_like(frag_charges),
            np.ones_like(pocket_charges),
        ])

        dataset.extend([{
            'name': row['name'],
            'X1': row['X1'],
            'X2': row['X2'],
            'protein_path': row['protein_path'],
            'ligand_path': row['ligand_path'],
            'positions': torch.tensor(positions, dtype=const.TORCH_FLOAT, device=device),
            'one_hot': torch.tensor(one_hot, dtype=const.TORCH_FLOAT, device=device),
            'charges': torch.tensor(charges, dtype=const.TORCH_FLOAT, device=device),
            'anchors': torch.tensor(anchor_flags, dtype=const.TORCH_FLOAT, device=device),
            'fragment_only_mask': torch.tensor(fragment_only_mask, dtype=const.TORCH_FLOAT, device=device),
            'pocket_mask': torch.tensor(pocket_mask, dtype=const.TORCH_FLOAT, device=device),
            'fragment_mask': torch.tensor(fragment_mask, dtype=const.TORCH_FLOAT, device=device),
            'linker_mask': torch.tensor(linker_mask, dtype=const.TORCH_FLOAT, device=device),
            'num_atoms': len(positions)
        }] * n_samples)

    dataset = ProteinConditionedDataset(data=dataset)
    ddpm.val_dataset = dataset

    global_batch_size = min(n_samples, max_batch_size)
    dataloader = get_dataloader(
        dataset, batch_size=global_batch_size, collate_fn=collate_with_fragment_without_pocket_edges
    )

    # df.drop(columns=['ligand_mol', 'protein_path'], inplace=True)
    linking_dfs = []
    # Sampling
    print('Sampling...')
    # TODO: update linking_summary.csv per batch
    for batch_i, data in tqdm(enumerate(dataloader), total=len(dataloader)):
        effective_batch_size = len(data['positions'])
        complex_name = data['name'][0]
        batch_df = pd.DataFrame({
            'name': data['name'],
            'X1': data['X1'],
            'X2': data['X2'],
            'protein_path': data['protein_path'],
            'ligand_path': data['ligand_path'],
        })
        chain = None
        node_mask = None
        for i in range(5):
            try:
                chain, node_mask = ddpm.sample_chain(data, sample_fn=sample_fn, keep_frames=1)
                break
            except FoundNaNException:
                continue
        if chain is None:
            log.warning(f'Could not generate linker for {complex_name} in 5 attempts')
            continue

        x = chain[0][:, :, :ddpm.n_dims]
        h = chain[0][:, :, ddpm.n_dims:]

        # Put the molecule back to the initial orientation
        com_mask = data['fragment_only_mask'] if ddpm.center_of_mass == 'fragments' else data['anchors']
        pos_masked = data['positions'] * com_mask
        N = com_mask.sum(1, keepdims=True)
        mean = torch.sum(pos_masked, dim=1, keepdim=True) / N
        x = x + mean * node_mask
        node_mask[torch.where(data['pocket_mask'])] = 0

        batch_df['out_path'] = [Path(output_dir, f'{complex_name}_{i}.sdf') for i in range(effective_batch_size)]
        batch_df['one_hot'] = list(h.cpu())
        batch_df['positions'] = list(x.cpu())
        batch_df['node_mask'] = list(node_mask.cpu())
        batch_df['X1^'] = batch_df.parallel_apply(
            lambda row: save_sdf(
                row['out_path'], row['one_hot'], row['positions'], row['node_mask'], is_geom=ddpm.is_geom
            ), axis=1
        )
        linking_dfs.append(batch_df[['name', 'protein_path', 'X2', 'ligand_path', 'X1', 'X1^', 'out_path']])
        # for i in range(effective_batch_size):
        #     # # Save XYZ file and generate SMILES
        #     # out_xyz = Path(output_dir, f'{name}_{offset_idx+i}.xyz')
        #     # smiles = save_xyz_files(out_xyz, h[i], x[i], node_mask[i], is_geom=ddpm.is_geom)
        #     # # Convert XYZ to SDF
        #     # out_sdf = Path(output_dir, name, f'output_{offset_idx+i}.sdf')
        #     # with open(os.devnull, 'w') as devnull:
        #     #     subprocess.run(f'obabel {out_xyz} -O {out_sdf} -q', shell=True, stdout=devnull)
        #     # Save SDF file and generate SMILES
        #     out_sdf = Path(output_dir, f'{data["name"][i]}.sdf')
        #     smiles = save_sdf(out_sdf, h[i], x[i], node_mask[i], is_geom=ddpm.is_geom)
        #
        #     # Add experiment summary info
        #     batch_df['X1^'] = smiles
        #     batch_df['out_path'] = str(out_sdf)
        #     linking_dfs.append(batch_df)

    if linking_dfs:
        linking_summary_df = pd.concat(linking_dfs, ignore_index=True)
        linking_summary_df.to_csv(Path(output_dir.parent, 'linking_summary.csv'), index=False)
        print(f'Saved experiment summary and generated molecules to {output_dir}')
    else:
        raise ValueError('No linkers generated.')


if __name__ == "__main__":
    parser = ArgumentParser()
    # Fragment docking settings
    parser.add_argument('--config', type=FileType(mode='r'), default='default_inference_args.yaml')
    parser.add_argument('--protein_ligand_csv', type=str, default=None,
                        help='Path to a .csv file specifying the input as described in the README. '
                             'If this is not None, it will be used instead of the `X1` and `X2` parameters')
    parser.add_argument('-n', '--name', type=str, default=None,
                        help='Name that the experiment will be saved with')
    parser.add_argument('--X1', type=str,
                        help='Either a SMILES string or the path of a molecule file that rdkit can read')
    parser.add_argument('--X2', type=str,
                        help='Either a FASTA sequence or the path of a protein for ESMFold')

    parser.add_argument('-l', '--log', '--loglevel', type=str, default='INFO', dest="loglevel",
                        help='Log level. Default %(default)s')

    parser.add_argument('--out_dir', type=str, default='results/',
                        help='Directory where the outputs will be written to')
    parser.add_argument('--save_docking', action='store_true', default=True,
                        help='Save the intermediate docking results including SDF files and a summary CSV.')
    parser.add_argument('--save_visualisation', action='store_true', default=False,
                        help='Save a pdb file with all of the steps of the reverse diffusion')
    parser.add_argument('--samples_per_complex', type=int, default=10,
                        help='Number of samples to generate')

    # parser.add_argument('--model_dir', type=str, default=None,
    #                     help='Path to folder with trained score model and hyperparameters')
    parser.add_argument('--score_ckpt', type=str, default='best_ema_inference_epoch_model.pt',
                        help='Checkpoint to use for the score model')
    # parser.add_argument('--confidence_model_dir', type=str, default=None,
    #                     help='Path to folder with trained confidence model and hyperparameters')
    parser.add_argument('--confidence_ckpt', type=str, default='best_model.pt',
                        help='Checkpoint to use for the confidence model')

    parser.add_argument('--n_poses', type=int, default=10, help='')
    parser.add_argument('--no_final_step_noise', action='store_true', default=True,
                        help='Use no noise in the final step of the reverse diffusion')
    parser.add_argument('--inference_steps', type=int, default=20, help='Number of denoising steps')
    parser.add_argument('--actual_steps', type=int, default=None,
                        help='Number of denoising steps that are actually performed')

    parser.add_argument('--old_score_model', action='store_true', default=False, help='')
    parser.add_argument('--old_confidence_model', action='store_true', default=True, help='')
    parser.add_argument('--initial_noise_std_proportion', type=float, default=-1.0,
                        help='Initial noise std proportion')
    parser.add_argument('--choose_residue', action='store_true', default=False, help='')

    parser.add_argument('--temp_sampling_tr', type=float, default=1.0)
    parser.add_argument('--temp_psi_tr', type=float, default=0.0)
    parser.add_argument('--temp_sigma_data_tr', type=float, default=0.5)
    parser.add_argument('--temp_sampling_rot', type=float, default=1.0)
    parser.add_argument('--temp_psi_rot', type=float, default=0.0)
    parser.add_argument('--temp_sigma_data_rot', type=float, default=0.5)
    parser.add_argument('--temp_sampling_tor', type=float, default=1.0)
    parser.add_argument('--temp_psi_tor', type=float, default=0.0)
    parser.add_argument('--temp_sigma_data_tor', type=float, default=0.5)

    parser.add_argument('--gnina_minimize', action='store_true', default=False, help='')
    parser.add_argument('--gnina_path', type=str, default='gnina', help='')
    parser.add_argument('--gnina_log_file', type=str, default='gnina_log.txt',
                        help='')  # To redirect gnina subprocesses stdouts from the terminal window
    parser.add_argument('--gnina_full_dock', action='store_true', default=False, help='')
    parser.add_argument('--gnina_autobox_add', type=float, default=4.0)
    parser.add_argument('--gnina_poses_to_optimize', type=int, default=1)

    # Linker generation settings
    # parser.add_argument('--fragments', action='store', type=str, required=True,
    #     help='Path to the file with input fragments'
    # )
    # parser.add_argument(
    #     '--protein', action='store', type=str, required=True,
    #     help='Path to the file with the target protein'
    # )
    parser.add_argument(
        '--backbone_atoms_only', action='store_true', required=False, default=False,
        help='Flag if to use only protein backbone atoms'
    )
    parser.add_argument(
        '--linker_ckpt', action='store', type=str,
        help='Path to the DiffLinker model'
    )
    parser.add_argument(
        '--linker_size', action='store', type=str,
        help='Linker size (int) or allowed size boundaries (comma-separated) or path to the size prediction model'
    )
    parser.add_argument(
        '--n_linkers', action='store', type=int, required=False, default=5,
        help='Number of linkers to generate'
    )
    parser.add_argument(
        '--n_steps', action='store', type=int, required=False, default=1000,
        help='Number of denoising steps'
    )
    parser.add_argument(
        '--anchors', action='store', type=str, required=False, default=None,
        help='Comma-separated indices of anchor atoms '
             '(according to the order of atoms in the input fragments file, enumeration starts with 1)'
    )
    parser.add_argument(
        '--max_batch_size', action='store', type=int, required=False, default=16,
        help='Max batch size'
    )
    parser.add_argument(
        '--random_seed', action='store', type=int, required=False, default=None,
        help='Random seed'
    )
    parser.add_argument(
        '--robust', action='store_true', required=False, default=False,
        help='Robust sampling modification'
    )
    parser.add_argument(
        '--dock', action='store_true', default=False,
        help='Fragment docking with DiffDock'
    )
    parser.add_argument(
            '--link', action='store_true', default=False,
        help='Linker generation with DiffLinker'
    )

    args = parser.parse_args()
    if args.config:
        config_dict = yaml.load(args.config, Loader=yaml.FullLoader)
        arg_dict = args.__dict__
        for key, value in config_dict.items():
            if isinstance(value, list):
                for v in value:
                    arg_dict[key].append(v)
            else:
                arg_dict[key] = value
    device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
    configure_logger(args.loglevel)
    log = get_logger()

    date_time = datetime.now().strftime("%Y-%m-%d_%H-%M-%S")
    experiment_name = f"{date_time}_{args.name}"
    args.out_dir = Path(args.out_dir, experiment_name)

    if args.dock:
        docking_df = dock_fragments(args)
        linking_df = process_docking_results(
            docking_df,
            eps=args.eps, min_samples=args.min_samples,
            frag_dist_range=args.frag_dist_range, distance_type=args.distance_type
        )
        if args.link:
            ddpm = DDPM.load_from_checkpoint(args.linker_ckpt, map_location=device, robust=args.robust).eval().to(device)
            generate_linker(
                linking_df,
                backbone_atoms_only=args.backbone_atoms_only,
                model=ddpm,
                output_dir=args.out_dir,
                n_samples=args.n_linkers,
                n_steps=args.n_steps,
                linker_size=args.linker_size,
                anchors=args.anchors,
                max_batch_size=args.max_batch_size,
                random_seed=args.random_seed,
            )
    
    if args.link:
        linking_df = pd.read_csv(args.protein_ligand_csv)
        ddpm = DDPM.load_from_checkpoint(args.linker_ckpt, map_location=device, robust=args.robust).eval().to(device)
        generate_linker(
            linking_df,
            backbone_atoms_only=args.backbone_atoms_only,
            model=ddpm,
            output_dir=args.out_dir,
            n_samples=args.n_linkers,
            n_steps=args.n_steps,
            linker_size=args.linker_size,
            anchors=args.anchors,
            max_batch_size=args.max_batch_size,
            random_seed=args.random_seed,
        )