File size: 25,406 Bytes
c17cba8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
import binascii
import glob
import os
import pickle
from collections import defaultdict
from multiprocessing import Pool
import random
import copy
import torch.nn.functional as F
import numpy as np
import torch
from rdkit import Chem
from rdkit.Chem import MolFromSmiles, AddHs
from torch_geometric.data import Dataset, HeteroData
from torch_geometric.transforms import BaseTransform
from tqdm import tqdm
from rdkit.Chem import RemoveAllHs

from datasets.process_mols import read_molecule, get_lig_graph_with_matching, generate_conformer, moad_extract_receptor_structure
from utils.diffusion_utils import modify_conformer, set_time
from utils.utils import read_strings_from_txt, crop_beyond
from utils import so3, torus


class NoiseTransform(BaseTransform):
    def __init__(self, t_to_sigma, no_torsion, all_atom, alpha=1, beta=1,
                 include_miscellaneous_atoms=False, crop_beyond_cutoff=None, time_independent=False, rmsd_cutoff=0,
                 minimum_t=0, sampling_mixing_coeff=0):
        self.t_to_sigma = t_to_sigma
        self.no_torsion = no_torsion
        self.all_atom = all_atom
        self.include_miscellaneous_atoms = include_miscellaneous_atoms
        self.minimum_t = minimum_t
        self.mixing_coeff = sampling_mixing_coeff
        self.alpha = alpha
        self.beta = beta
        self.crop_beyond_cutoff = crop_beyond_cutoff
        self.rmsd_cutoff = rmsd_cutoff
        self.time_independent = time_independent

    def __call__(self, data):
        t_tr, t_rot, t_tor, t = self.get_time()
        return self.apply_noise(data, t_tr, t_rot, t_tor, t)

    def get_time(self):
        if self.time_independent:
            t = np.random.beta(self.alpha, self.beta)
            t_tr, t_rot, t_tor = t,t,t
        else:
            t = None
            if self.mixing_coeff == 0:
                t = np.random.beta(self.alpha, self.beta)
                t = self.minimum_t + t * (1 - self.minimum_t)
            else:
                choice = np.random.binomial(1, self.mixing_coeff)
                t1 = np.random.beta(self.alpha, self.beta)
                t1 = t1 * self.minimum_t
                t2 = np.random.beta(self.alpha, self.beta)
                t2 = self.minimum_t + t2 * (1 - self.minimum_t)
                t = choice * t1 + (1 - choice) * t2 

            t_tr, t_rot, t_tor = t,t,t
        return t_tr, t_rot, t_tor, t

    def apply_noise(self, data, t_tr, t_rot, t_tor, t, tr_update = None, rot_update=None, torsion_updates=None):
        if not torch.is_tensor(data['ligand'].pos):
            data['ligand'].pos = random.choice(data['ligand'].pos)

        if self.time_independent:
            orig_complex_graph = copy.deepcopy(data)

        tr_sigma, rot_sigma, tor_sigma = self.t_to_sigma(t_tr, t_rot, t_tor)

        if self.time_independent:
            set_time(data, 0, 0, 0, 0, 1, self.all_atom, device=None, include_miscellaneous_atoms=self.include_miscellaneous_atoms)
        else:
            set_time(data, t, t_tr, t_rot, t_tor, 1, self.all_atom, device=None, include_miscellaneous_atoms=self.include_miscellaneous_atoms)

        tr_update = torch.normal(mean=0, std=tr_sigma, size=(1, 3)) if tr_update is None else tr_update
        rot_update = so3.sample_vec(eps=rot_sigma) if rot_update is None else rot_update
        torsion_updates = np.random.normal(loc=0.0, scale=tor_sigma, size=data['ligand'].edge_mask.sum()) if torsion_updates is None else torsion_updates
        torsion_updates = None if self.no_torsion else torsion_updates
        try:
            modify_conformer(data, tr_update, torch.from_numpy(rot_update).float(), torsion_updates)
        except Exception as e:
            print("failed modify conformer")
            print(e)

        if self.time_independent:
            if self.no_torsion:
                orig_complex_graph['ligand'].orig_pos = (orig_complex_graph['ligand'].pos.cpu().numpy() + orig_complex_graph.original_center.cpu().numpy())

            filterHs = torch.not_equal(data['ligand'].x[:, 0], 0).cpu().numpy()
            if isinstance(orig_complex_graph['ligand'].orig_pos, list):
                orig_complex_graph['ligand'].orig_pos = orig_complex_graph['ligand'].orig_pos[0]
            ligand_pos = data['ligand'].pos.cpu().numpy()[filterHs]
            orig_ligand_pos = orig_complex_graph['ligand'].orig_pos[filterHs] - orig_complex_graph.original_center.cpu().numpy()
            rmsd = np.sqrt(((ligand_pos - orig_ligand_pos) ** 2).sum(axis=1).mean(axis=0))
            data.y = torch.tensor(rmsd < self.rmsd_cutoff).float().unsqueeze(0)
            data.atom_y = data.y
            return data

        data.tr_score = -tr_update / tr_sigma ** 2
        data.rot_score = torch.from_numpy(so3.score_vec(vec=rot_update, eps=rot_sigma)).float().unsqueeze(0)
        data.tor_score = None if self.no_torsion else torch.from_numpy(torus.score(torsion_updates, tor_sigma)).float()
        data.tor_sigma_edge = None if self.no_torsion else np.ones(data['ligand'].edge_mask.sum()) * tor_sigma

        if data['ligand'].pos.shape[0] == 1:
            # if the ligand is a single atom, the rotational score is always 0
            data.rot_score = data.rot_score * 0

        if self.crop_beyond_cutoff is not None:
            crop_beyond(data, tr_sigma * 3 + self.crop_beyond_cutoff, self.all_atom)
        set_time(data, t, t_tr, t_rot, t_tor, 1, self.all_atom, device=None, include_miscellaneous_atoms=self.include_miscellaneous_atoms)
        return data


class PDBBind(Dataset):
    def __init__(self, root, transform=None, cache_path='data/cache', split_path='data/', limit_complexes=0, chain_cutoff=10,
                 receptor_radius=30, num_workers=1, c_alpha_max_neighbors=None, popsize=15, maxiter=15,
                 matching=True, keep_original=False, max_lig_size=None, remove_hs=False, num_conformers=1, all_atoms=False,
                 atom_radius=5, atom_max_neighbors=None, esm_embeddings_path=None, require_ligand=False,
                 include_miscellaneous_atoms=False,
                 protein_path_list=None, ligand_descriptions=None, keep_local_structures=False,
                 protein_file="protein_processed", ligand_file="ligand",
                 knn_only_graph=False, matching_tries=1, dataset='PDBBind'):

        super(PDBBind, self).__init__(root, transform)
        self.pdbbind_dir = root
        self.include_miscellaneous_atoms = include_miscellaneous_atoms
        self.max_lig_size = max_lig_size
        self.split_path = split_path
        self.limit_complexes = limit_complexes
        self.chain_cutoff = chain_cutoff
        self.receptor_radius = receptor_radius
        self.num_workers = num_workers
        self.c_alpha_max_neighbors = c_alpha_max_neighbors
        self.remove_hs = remove_hs
        self.esm_embeddings_path = esm_embeddings_path
        self.use_old_wrong_embedding_order = False
        self.require_ligand = require_ligand
        self.protein_path_list = protein_path_list
        self.ligand_descriptions = ligand_descriptions
        self.keep_local_structures = keep_local_structures
        self.protein_file = protein_file
        self.fixed_knn_radius_graph = True
        self.knn_only_graph = knn_only_graph
        self.matching_tries = matching_tries
        self.ligand_file = ligand_file
        self.dataset = dataset
        assert knn_only_graph or (not all_atoms)
        self.all_atoms = all_atoms
        if matching or protein_path_list is not None and ligand_descriptions is not None:
            cache_path += '_torsion'
        if all_atoms:
            cache_path += '_allatoms'
        self.full_cache_path = os.path.join(cache_path, f'{dataset}3_limit{self.limit_complexes}'
                                                        f'_INDEX{os.path.splitext(os.path.basename(self.split_path))[0]}'
                                                        f'_maxLigSize{self.max_lig_size}_H{int(not self.remove_hs)}'
                                                        f'_recRad{self.receptor_radius}_recMax{self.c_alpha_max_neighbors}'
                                                        f'_chainCutoff{self.chain_cutoff if self.chain_cutoff is None else int(self.chain_cutoff)}'
                                            + (''if not all_atoms else f'_atomRad{atom_radius}_atomMax{atom_max_neighbors}')
                                            + (''if not matching or num_conformers == 1 else f'_confs{num_conformers}')
                                            + ('' if self.esm_embeddings_path is None else f'_esmEmbeddings')
                                            + '_full'
                                            + ('' if not keep_local_structures else f'_keptLocalStruct')
                                            + ('' if protein_path_list is None or ligand_descriptions is None else str(binascii.crc32(''.join(ligand_descriptions + protein_path_list).encode())))
                                            + ('' if protein_file == "protein_processed" else '_' + protein_file)
                                            + ('' if not self.fixed_knn_radius_graph else (f'_fixedKNN' if not self.knn_only_graph else '_fixedKNNonly'))
                                            + ('' if not self.include_miscellaneous_atoms else '_miscAtoms')
                                            + ('' if self.use_old_wrong_embedding_order else '_chainOrd')
                                            + ('' if self.matching_tries == 1 else f'_tries{matching_tries}'))
        self.popsize, self.maxiter = popsize, maxiter
        self.matching, self.keep_original = matching, keep_original
        self.num_conformers = num_conformers

        self.atom_radius, self.atom_max_neighbors = atom_radius, atom_max_neighbors
        if not self.check_all_complexes():
            os.makedirs(self.full_cache_path, exist_ok=True)
            if protein_path_list is None or ligand_descriptions is None:
                self.preprocessing()
            else:
                self.inference_preprocessing()

        self.complex_graphs, self.rdkit_ligands = self.collect_all_complexes()
        print_statistics(self.complex_graphs)
        list_names = [complex['name'] for complex in self.complex_graphs]
        with open(os.path.join(self.full_cache_path, f'pdbbind_{os.path.splitext(os.path.basename(self.split_path))[0][:3]}_names.txt'), 'w') as f:
            f.write('\n'.join(list_names))

    def len(self):
        return len(self.complex_graphs)

    def get(self, idx):
        complex_graph = copy.deepcopy(self.complex_graphs[idx])
        if self.require_ligand:
            complex_graph.mol = RemoveAllHs(copy.deepcopy(self.rdkit_ligands[idx]))

        for a in ['random_coords', 'coords', 'seq', 'sequence', 'mask', 'rmsd_matching', 'cluster', 'orig_seq', 'to_keep', 'chain_ids']:
            if hasattr(complex_graph, a):
                delattr(complex_graph, a)
            if hasattr(complex_graph['receptor'], a):
                delattr(complex_graph['receptor'], a)

        return complex_graph

    def preprocessing(self):
        print(f'Processing complexes from [{self.split_path}] and saving it to [{self.full_cache_path}]')

        complex_names_all = read_strings_from_txt(self.split_path)
        if self.limit_complexes is not None and self.limit_complexes != 0:
            complex_names_all = complex_names_all[:self.limit_complexes]
        print(f'Loading {len(complex_names_all)} complexes.')

        if self.esm_embeddings_path is not None:
            id_to_embeddings = torch.load(self.esm_embeddings_path)
            chain_embeddings_dictlist = defaultdict(list)
            chain_indices_dictlist = defaultdict(list)
            for key, embedding in id_to_embeddings.items():
                key_name = key.split('_chain_')[0]
                if key_name in complex_names_all:
                    chain_embeddings_dictlist[key_name].append(embedding)
                    chain_indices_dictlist[key_name].append(int(key.split('_chain_')[1]))
            lm_embeddings_chains_all = []
            for name in complex_names_all:
                complex_chains_embeddings = chain_embeddings_dictlist[name]
                complex_chains_indices = chain_indices_dictlist[name]
                chain_reorder_idx = np.argsort(complex_chains_indices)
                reordered_chains = [complex_chains_embeddings[i] for i in chain_reorder_idx]
                lm_embeddings_chains_all.append(reordered_chains)
        else:
            lm_embeddings_chains_all = [None] * len(complex_names_all)

        # running preprocessing in parallel on multiple workers and saving the progress every 1000 complexes
        list_indices = list(range(len(complex_names_all)//1000+1))
        random.shuffle(list_indices)
        for i in list_indices:
            if os.path.exists(os.path.join(self.full_cache_path, f"heterographs{i}.pkl")):
                continue
            complex_names = complex_names_all[1000*i:1000*(i+1)]
            lm_embeddings_chains = lm_embeddings_chains_all[1000*i:1000*(i+1)]
            complex_graphs, rdkit_ligands = [], []
            if self.num_workers > 1:
                p = Pool(self.num_workers, maxtasksperchild=1)
                p.__enter__()
            with tqdm(total=len(complex_names), desc=f'loading complexes {i}/{len(complex_names_all)//1000+1}') as pbar:
                map_fn = p.imap_unordered if self.num_workers > 1 else map
                for t in map_fn(self.get_complex, zip(complex_names, lm_embeddings_chains, [None] * len(complex_names), [None] * len(complex_names))):
                    complex_graphs.extend(t[0])
                    rdkit_ligands.extend(t[1])
                    pbar.update()
            if self.num_workers > 1: p.__exit__(None, None, None)

            with open(os.path.join(self.full_cache_path, f"heterographs{i}.pkl"), 'wb') as f:
                pickle.dump((complex_graphs), f)
            with open(os.path.join(self.full_cache_path, f"rdkit_ligands{i}.pkl"), 'wb') as f:
                pickle.dump((rdkit_ligands), f)

    def inference_preprocessing(self):
        ligands_list = []
        print('Reading molecules and generating local structures with RDKit')
        for ligand_description in tqdm(self.ligand_descriptions):
            mol = MolFromSmiles(ligand_description)  # check if it is a smiles or a path
            if mol is not None:
                mol = AddHs(mol)
                generate_conformer(mol)
                ligands_list.append(mol)
            else:
                mol = read_molecule(ligand_description, remove_hs=False, sanitize=True)
                if not self.keep_local_structures:
                    mol.RemoveAllConformers()
                    mol = AddHs(mol)
                    generate_conformer(mol)
                ligands_list.append(mol)

        if self.esm_embeddings_path is not None:
            print('Reading language model embeddings.')
            lm_embeddings_chains_all = []
            if not os.path.exists(self.esm_embeddings_path): raise Exception('ESM embeddings path does not exist: ',self.esm_embeddings_path)
            for protein_path in self.protein_path_list:
                embeddings_paths = sorted(glob.glob(os.path.join(self.esm_embeddings_path, os.path.basename(protein_path)) + '*'))
                lm_embeddings_chains = []
                for embeddings_path in embeddings_paths:
                    lm_embeddings_chains.append(torch.load(embeddings_path)['representations'][33])
                lm_embeddings_chains_all.append(lm_embeddings_chains)
        else:
            lm_embeddings_chains_all = [None] * len(self.protein_path_list)

        print('Generating graphs for ligands and proteins')
        # running preprocessing in parallel on multiple workers and saving the progress every 1000 complexes
        list_indices = list(range(len(self.protein_path_list)//1000+1))
        random.shuffle(list_indices)
        for i in list_indices:
            if os.path.exists(os.path.join(self.full_cache_path, f"heterographs{i}.pkl")):
                continue
            protein_paths_chunk = self.protein_path_list[1000*i:1000*(i+1)]
            ligand_description_chunk = self.ligand_descriptions[1000*i:1000*(i+1)]
            ligands_chunk = ligands_list[1000 * i:1000 * (i + 1)]
            lm_embeddings_chains = lm_embeddings_chains_all[1000*i:1000*(i+1)]
            complex_graphs, rdkit_ligands = [], []
            if self.num_workers > 1:
                p = Pool(self.num_workers, maxtasksperchild=1)
                p.__enter__()
            with tqdm(total=len(protein_paths_chunk), desc=f'loading complexes {i}/{len(protein_paths_chunk)//1000+1}') as pbar:
                map_fn = p.imap_unordered if self.num_workers > 1 else map
                for t in map_fn(self.get_complex, zip(protein_paths_chunk, lm_embeddings_chains, ligands_chunk,ligand_description_chunk)):
                    complex_graphs.extend(t[0])
                    rdkit_ligands.extend(t[1])
                    pbar.update()
            if self.num_workers > 1: p.__exit__(None, None, None)

            with open(os.path.join(self.full_cache_path, f"heterographs{i}.pkl"), 'wb') as f:
                pickle.dump((complex_graphs), f)
            with open(os.path.join(self.full_cache_path, f"rdkit_ligands{i}.pkl"), 'wb') as f:
                pickle.dump((rdkit_ligands), f)

    def check_all_complexes(self):
        if os.path.exists(os.path.join(self.full_cache_path, f"heterographs.pkl")):
            return True

        complex_names_all = read_strings_from_txt(self.split_path)
        if self.limit_complexes is not None and self.limit_complexes != 0:
            complex_names_all = complex_names_all[:self.limit_complexes]
        for i in range(len(complex_names_all) // 1000 + 1):
            if not os.path.exists(os.path.join(self.full_cache_path, f"heterographs{i}.pkl")):
                return False
        return True

    def collect_all_complexes(self):
        print('Collecting all complexes from cache', self.full_cache_path)
        if os.path.exists(os.path.join(self.full_cache_path, f"heterographs.pkl")):
            with open(os.path.join(self.full_cache_path, "heterographs.pkl"), 'rb') as f:
                complex_graphs = pickle.load(f)
            if self.require_ligand:
                with open(os.path.join(self.full_cache_path, "rdkit_ligands.pkl"), 'rb') as f:
                    rdkit_ligands = pickle.load(f)
            else:
                rdkit_ligands = None
            return complex_graphs, rdkit_ligands

        complex_names_all = read_strings_from_txt(self.split_path)
        if self.limit_complexes is not None and self.limit_complexes != 0:
            complex_names_all = complex_names_all[:self.limit_complexes]
        complex_graphs_all = []
        for i in range(len(complex_names_all) // 1000 + 1):
            with open(os.path.join(self.full_cache_path, f"heterographs{i}.pkl"), 'rb') as f:
                print(i)
                l = pickle.load(f)
                complex_graphs_all.extend(l)

        rdkit_ligands_all = []
        for i in range(len(complex_names_all) // 1000 + 1):
            with open(os.path.join(self.full_cache_path, f"rdkit_ligands{i}.pkl"), 'rb') as f:
                l = pickle.load(f)
                rdkit_ligands_all.extend(l)

        return complex_graphs_all, rdkit_ligands_all

    def get_complex(self, par):
        name, lm_embedding_chains, ligand, ligand_description = par
        if not os.path.exists(os.path.join(self.pdbbind_dir, name)) and ligand is None:
            print("Folder not found", name)
            return [], []

        try:

            lig = read_mol(self.pdbbind_dir, name, suffix=self.ligand_file, remove_hs=False)
            if self.max_lig_size != None and lig.GetNumHeavyAtoms() > self.max_lig_size:
                print(f'Ligand with {lig.GetNumHeavyAtoms()} heavy atoms is larger than max_lig_size {self.max_lig_size}. Not including {name} in preprocessed data.')
                return [], []

            complex_graph = HeteroData()
            complex_graph['name'] = name
            get_lig_graph_with_matching(lig, complex_graph, self.popsize, self.maxiter, self.matching, self.keep_original,
                                        self.num_conformers, remove_hs=self.remove_hs, tries=self.matching_tries)

            moad_extract_receptor_structure(path=os.path.join(self.pdbbind_dir, name, f'{name}_{self.protein_file}.pdb'),
                                            complex_graph=complex_graph,
                                            neighbor_cutoff=self.receptor_radius,
                                            max_neighbors=self.c_alpha_max_neighbors,
                                            lm_embeddings=lm_embedding_chains,
                                            knn_only_graph=self.knn_only_graph,
                                            all_atoms=self.all_atoms,
                                            atom_cutoff=self.atom_radius,
                                            atom_max_neighbors=self.atom_max_neighbors)

        except Exception as e:
            print(f'Skipping {name} because of the error:')
            print(e)
            return [], []

        if self.dataset == 'posebusters':
            other_positions = []
            all_mol_file = os.path.join(self.pdbbind_dir, name, f'{name}_ligands.sdf')
            supplier = Chem.SDMolSupplier(all_mol_file, sanitize=False, removeHs=False)
            for mol in supplier:
                Chem.SanitizeMol(mol)
                all_mol = RemoveAllHs(mol)
                for conf in all_mol.GetConformers():
                    other_positions.append(conf.GetPositions())

            print(f'Found {len(other_positions)} alternative poses for {name}')
            complex_graph['ligand'].orig_pos = np.asarray(other_positions)

        protein_center = torch.mean(complex_graph['receptor'].pos, dim=0, keepdim=True)
        complex_graph['receptor'].pos -= protein_center
        if self.all_atoms:
            complex_graph['atom'].pos -= protein_center

        if (not self.matching) or self.num_conformers == 1:
            complex_graph['ligand'].pos -= protein_center
        else:
            for p in complex_graph['ligand'].pos:
                p -= protein_center

        complex_graph.original_center = protein_center
        complex_graph['receptor_name'] = name
        return [complex_graph], [lig]


def print_statistics(complex_graphs):
    statistics = ([], [], [], [], [], [])
    receptor_sizes = []

    for complex_graph in complex_graphs:
        lig_pos = complex_graph['ligand'].pos if torch.is_tensor(complex_graph['ligand'].pos) else complex_graph['ligand'].pos[0]
        receptor_sizes.append(complex_graph['receptor'].pos.shape[0])
        radius_protein = torch.max(torch.linalg.vector_norm(complex_graph['receptor'].pos, dim=1))
        molecule_center = torch.mean(lig_pos, dim=0)
        radius_molecule = torch.max(
            torch.linalg.vector_norm(lig_pos - molecule_center.unsqueeze(0), dim=1))
        distance_center = torch.linalg.vector_norm(molecule_center)
        statistics[0].append(radius_protein)
        statistics[1].append(radius_molecule)
        statistics[2].append(distance_center)
        if "rmsd_matching" in complex_graph:
            statistics[3].append(complex_graph.rmsd_matching)
        else:
            statistics[3].append(0)
        statistics[4].append(int(complex_graph.random_coords) if "random_coords" in complex_graph else -1)
        if "random_coords" in complex_graph and complex_graph.random_coords and "rmsd_matching" in complex_graph:
            statistics[5].append(complex_graph.rmsd_matching)

    if len(statistics[5]) == 0:
        statistics[5].append(-1)
    name = ['radius protein', 'radius molecule', 'distance protein-mol', 'rmsd matching', 'random coordinates', 'random rmsd matching']
    print('Number of complexes: ', len(complex_graphs))
    for i in range(len(name)):
        array = np.asarray(statistics[i])
        print(f"{name[i]}: mean {np.mean(array)}, std {np.std(array)}, max {np.max(array)}")

    return


def read_mol(pdbbind_dir, name, suffix='ligand', remove_hs=False):
    lig = read_molecule(os.path.join(pdbbind_dir, name, f'{name}_{suffix}.sdf'), remove_hs=remove_hs, sanitize=True)
    if lig is None:  # read mol2 file if sdf file cannot be sanitized
        lig = read_molecule(os.path.join(pdbbind_dir, name, f'{name}_{suffix}.mol2'), remove_hs=remove_hs, sanitize=True)
    return lig


def read_mols(pdbbind_dir, name, remove_hs=False):
    ligs = []
    for file in os.listdir(os.path.join(pdbbind_dir, name)):
        if file.endswith(".sdf") and 'rdkit' not in file:
            lig = read_molecule(os.path.join(pdbbind_dir, name, file), remove_hs=remove_hs, sanitize=True)
            if lig is None and os.path.exists(os.path.join(pdbbind_dir, name, file[:-4] + ".mol2")):  # read mol2 file if sdf file cannot be sanitized
                print('Using the .sdf file failed. We found a .mol2 file instead and are trying to use that.')
                lig = read_molecule(os.path.join(pdbbind_dir, name, file[:-4] + ".mol2"), remove_hs=remove_hs, sanitize=True)
            if lig is not None:
                ligs.append(lig)
    return ligs