Spaces:
Sleeping
Sleeping
File size: 4,794 Bytes
cb1153d b650d21 cb1153d b650d21 64f4698 9360f28 64f4698 9360f28 8b6792f f06c0b0 cb1153d 9360f28 cb1153d b74b9a7 cb1153d 64f4698 cb1153d 1a48301 cb1153d 1a48301 cb1153d e9bc03c fcac88a e9bc03c fcac88a cb1153d 1a48301 cb1153d fcac88a cb1153d 8b6792f 9360f28 f06c0b0 adc30f3 f06c0b0 adc30f3 f06c0b0 e9bc03c f06c0b0 cb1153d f06c0b0 cb1153d f06c0b0 cb1153d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 |
import plotly.express as px
import pandas as pd
import json
import plotly.graph_objects as go
from datasets import load_dataset
import streamlit as st
REPO_ID = "libeIO/Sciences-POC"
with open('config/mapping_prompts.txt', 'r') as f:
mapping = json.loads(f.read())
with open('config/mapping_noms.txt', 'r') as f:
mapping_noms = json.loads(f.read())
if 'name' not in st.session_state.keys():
st.session_state['name'] = 'Groupe 1'
@st.cache_resource
def initialize(name):
articles = pd.read_csv('data/extract_sciences_po.csv')
with open(f"{mapping[mapping_noms[name]]['save_path']}", 'r') as f :
out_dict = json.loads(f.read())
df = pd.DataFrame.from_dict(out_dict)
articles = pd.merge(df, articles, on='item_id', how='left')
count_principale = df.groupby('categorie_principale').item_id.count()
df['categorie_secondaire'] = df.apply(lambda x : x.categorie_secondaire.split(',')[0], axis=1)
count_secondaire = df.groupby('categorie_secondaire').item_id.count()
display_principale = count_principale.reset_index()
display_principale.columns = ['Catégorie', 'Nombre d\'articles']
display_secondaire = count_secondaire.reset_index()
display_secondaire.columns = ['Catégorie', 'Nombre d\'articles']
template ="ggplot2"
fig = go.Figure()
fig.update_layout(template=template,
)
fig.add_trace(go.Scatterpolar(
r=display_principale['Nombre d\'articles'],
theta=display_principale['Catégorie'],
fill='toself',
name='Catégorie Principale',
marker = {'color' : 'red'},
))
fig.add_trace(go.Scatterpolar(
r=display_secondaire['Nombre d\'articles'],
theta=display_secondaire['Catégorie'],
fill='toself',
name='Catégorie Secondaire',
marker = {'color' : 'blue'},
opacity=0.25,
))
fig.update_layout(
polar=dict(
radialaxis=dict(
visible=True,
range=[0, max(max(display_principale['Nombre d\'articles']), max(display_secondaire['Nombre d\'articles']))]
)),
showlegend=True
)
fig.update_layout(legend=dict(
yanchor="top",
y=0.0001,
xanchor="left",
x=0.395
))
path_prompt = mapping[mapping_noms[name]]['path_prompt']
model = mapping[mapping_noms[name]]['client']
with open(path_prompt, 'r') as f :
prompt = f.read()
return fig, display_principale, articles, prompt, model
def display_article(article):
url = article['url']
colImage, colText = st.columns(2)
# try :
with colImage :
st.image(article["image_url"]) # image URL
with colText:
if 'subhead' in article.index and article['subhead']!='nan':
st.subheader(f":red[{article['subhead']}] [{article['titre'].rstrip('Libération').rstrip('-')[:-2]}]({url})") # Title
else :
# st.toast(article.index)
titre_cleaned = article['titre'].removesuffix('Libération').rstrip('-').strip()
st.subheader(f"[{titre_cleaned}]({url})") # Title
st.write(f"{article['description']}") # Header
formatted_date = article["date_published"]
if article.premium:
st.markdown(
f"""
<span style='color:grey'>{formatted_date+" "} </span> <span style='color:#eeb54e'> abonnés</span>
""",
unsafe_allow_html=True
)
else :
st.markdown(
f"""
<span style='color:grey'>{formatted_date+" "} </span>
""",
unsafe_allow_html=True
)
st.badge(f"Catégories secondaires : {article['categorie_secondaire']}", icon=":material/info:", color="blue")
# except :
# st.toast(f'Error displaying article {article.item_id}')
# return
fig, display_principale, articles, prompt, model = initialize(st.session_state['name'])
# col1, col2, col3 = st.columns([0.5, 0.2, 0.3])
st.selectbox("Choisir groupe", [mapping[k]['auteurs'] for k in mapping.keys()], key='name')
with st.expander(f"Prompt for model : {model}") :
st.markdown(prompt)
st.subheader('Répartition des articles par catégorie')
# with col1:
col1, col2 = st.columns([0.6, 0.4], vertical_alignment='center')
with col1:
st.plotly_chart(fig)
with col2:
st.dataframe(display_principale.set_index('Catégorie').sort_values(by='Nombre d\'articles', ascending=False))
st.subheader('Exemples d\'articles')
tabs = st.tabs(display_principale['Catégorie'].values.tolist())
for i in range(len(tabs)):
with tabs[i]:
cat = display_principale['Catégorie'][i]
for i, article in articles.loc[articles.categorie_principale==cat].sample(20, replace=True).drop_duplicates().iterrows():
display_article(article)
|