File size: 6,097 Bytes
cb1153d
 
 
 
b650d21
cb1153d
 
b650d21
166f16f
b650d21
9360f28
 
 
 
 
 
 
b650d21
cb1153d
 
9360f28
cb1153d
89b1afb
cb1153d
166f16f
cb1153d
 
 
 
 
 
 
1a48301
cb1153d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1a48301
cb1153d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e9bc03c
 
 
 
 
 
cb1153d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1a48301
 
cb1153d
 
 
 
 
e9bc03c
cb1153d
 
9360f28
 
e9bc03c
 
 
cb1153d
 
 
 
 
 
 
 
 
 
 
 
 
9491167
 
 
130e00d
9491167
cb1153d
9491167
 
 
 
cb1153d
 
9491167
 
 
 
cb1153d
 
9491167
 
 
 
cb1153d
 
9491167
 
 
 
cb1153d
 
9491167
 
 
 
cb1153d
9491167
 
 
 
 
cb1153d
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
import plotly.express as px
import pandas as pd
import json
import plotly.graph_objects as go
from datasets import load_dataset
import streamlit as st

REPO_ID = "libeIO/Sciences-POC"
SAVE_PATH = "save"

with open('mapping_prompts.txt', 'r') as f:
    mapping = json.loads(f.read())

with open('mapping_noms.txt', 'r') as f:
    mapping_noms = json.loads(f.read())

if 'name' not in st.session_state.keys():
    st.session_state['name'] = 'Inconnus 1'
    
@st.cache_resource
def initialize(name):

    articles = pd.read_csv('extract_sciences_po.csv')

    with open(f"{SAVE_PATH}/{mapping[mapping_noms[name]]['save_path']}", 'r') as f : 
        out_dict = json.loads(f.read())
    
    df = pd.DataFrame.from_dict(out_dict)

    articles = pd.merge(df, articles, on='item_id', how='left')

    count_principale = df.groupby('categorie_principale').item_id.count()
    df['categorie_secondaire'] = df.apply(lambda x : x.categorie_secondaire.split(',')[0], axis=1)
    count_secondaire = df.groupby('categorie_secondaire').item_id.count()
    display_principale = count_principale.reset_index()
    display_principale.columns = ['Catégorie', 'Nombre d\'articles']
    display_secondaire = count_secondaire.reset_index()
    display_secondaire.columns = ['Catégorie', 'Nombre d\'articles']

    template ="ggplot2"

    fig = go.Figure()
        
    fig.update_layout(template=template, 
                      )

    fig.add_trace(go.Scatterpolar(
        r=display_principale['Nombre d\'articles'],
        theta=display_principale['Catégorie'],
        fill='toself',
        name='Catégorie Principale',
        marker = {'color' : 'red'},

    ))
    fig.add_trace(go.Scatterpolar(
        r=display_secondaire['Nombre d\'articles'],
        theta=display_secondaire['Catégorie'],
        fill='toself',
        name='Catégorie Secondaire',
        marker = {'color' : 'blue'},
        opacity=0.25,
    ))

    fig.update_layout(
    polar=dict(
        radialaxis=dict(
        visible=True,
        range=[0, max(max(display_principale['Nombre d\'articles']), max(display_secondaire['Nombre d\'articles']))]
        )),
    showlegend=True
    )
    fig.update_layout(legend=dict(
    yanchor="top",
    y=0.0001,
    xanchor="left",
    x=0.395
))
    
    path_prompt = mapping[mapping_noms[name]]['path_prompt']
    with open(path_prompt, 'r') as f : 
        prompt = f.read()

    return fig, display_principale, articles, prompt


def display_article(article):

    url = article['url']

    colImage, colText = st.columns(2)
# try :   
    with colImage :
        st.image(article["image_url"]) # image URL
    with colText:
        if 'subhead' in article.index and article['subhead']!='nan':
            st.subheader(f":red[{article['subhead']}] [{article['titre'].rstrip('Libération').rstrip('-')[:-2]}]({url})") # Title 
        else : 
            # st.toast(article.index)
            titre_cleaned = article['titre'].removesuffix('Libération').rstrip('-').strip()
            st.subheader(f"[{titre_cleaned}]({url})") # Title 
        st.write(f"{article['description']}") # Header
        formatted_date = article["date_published"]
        if article.premium:
            st.markdown(
        f"""
        <span style='color:grey'>{formatted_date+" "} </span>  <span style='color:#eeb54e'> abonnés</span>
    """,
    unsafe_allow_html=True
    )
        else :
            st.markdown(
        f"""
        <span style='color:grey'>{formatted_date+" "} </span>
    """,
    unsafe_allow_html=True
    )
            
        st.badge(f"Catégories secondaires : {article['categorie_secondaire']}", icon=":material/info:", color="blue")
    # except :
    #     st.toast(f'Error displaying article {article.item_id}')
    #     return 
        

fig, display_principale, articles, prompt = initialize(st.session_state['name'])
# col1, col2, col3 = st.columns([0.5, 0.2, 0.3])

st.selectbox("Choisir groupe", [mapping[k]['auteurs'] for k in mapping.keys()], key='name')

with st.expander("prompt") : 
    st.markdown(prompt)

st.subheader('Répartition des articles par catégorie')
# with col1:
col1, col2 = st.columns([0.6, 0.4], vertical_alignment='center')

with col1:
    st.plotly_chart(fig)

with col2:
    st.dataframe(display_principale.set_index('Catégorie').sort_values(by='Nombre d\'articles', ascending=False))

st.subheader('Exemples d\'articles')
tabs = st.tabs(display_principale['Catégorie'].values.tolist())

for i in range(len(tabs)):
    with tabs[i]:
        cat = display_principale['Catégorie'][i]
        for i, article in articles.loc[articles.categorie_principale==cat].sample(20, replace=True).drop_duplicates().iterrows():
            display_article(article)

# with tabs[0]:
#     cat = display_principale['Catégorie'][0]
#     for i, article in articles.loc[articles.categorie_principale==cat].sample(10, replace=True).drop_duplicates().iterrows():
#         display_article(article)


# with tabs[1]:
#     cat = display_principale['Catégorie'][1]
#     for i, article in articles.loc[articles.categorie_principale==cat].sample(10, replace=True).drop_duplicates().iterrows():
#         display_article(article)


# with tabs[2]:
#     cat = display_principale['Catégorie'][2]
#     for i, article in articles.loc[articles.categorie_principale==cat].sample(10, replace=True).drop_duplicates().iterrows():
#         display_article(article)


# with tabs[3]:
#     cat = display_principale['Catégorie'][3]
#     for i, article in articles.loc[articles.categorie_principale==cat].sample(10, replace=True).drop_duplicates().iterrows():
#         display_article(article)


# with tabs[4]:
#     cat = display_principale['Catégorie'][4]
#     for i, article in articles.loc[articles.categorie_principale==cat].sample(10, replace=True).drop_duplicates().iterrows():
#         display_article(article)


# with tabs[5]:
#     cat = display_principale['Catégorie'][5]
#     for i, article in articles.loc[articles.categorie_principale==cat].sample(10, replace=True).drop_duplicates().iterrows():
#         display_article(article)