Spaces:
Sleeping
Sleeping
from functools import partial, lru_cache | |
import duckdb | |
import gradio as gr | |
import pandas as pd | |
import requests | |
from huggingface_hub import HfApi | |
READ_PARQUET_FUNCTIONS = ("dd.read_parquet", "pd.read_parquet") | |
EMPTY_DF = pd.DataFrame([{str(i): "" for i in range(4)}] * 10) | |
MAX_NUM_COLUMNS = 20 | |
css = """ | |
@media (prefers-color-scheme: dark) { | |
.transparent-dropdown, .transparent-dropdown .container .wrap { | |
background: var(--bg-dark); | |
} | |
} | |
@media (prefers-color-scheme: light) { | |
.transparent-dropdown, .transparent-dropdown .container .wrap { | |
background: var(--bg); | |
} | |
} | |
input { | |
-webkit-user-select: none; | |
-moz-user-select: none; | |
-ms-user-select: none; | |
user-select: none; | |
} | |
.cell-menu-button { | |
z-index: -1; | |
} | |
thead { | |
display: none; | |
} | |
""" | |
js = """ | |
function setDataFrameReadonly() { | |
MutationObserver = window.MutationObserver || window.WebKitMutationObserver; | |
var observer = new MutationObserver(function(mutations, observer) { | |
// fired when a mutation occurs | |
document.querySelectorAll('.readonly-dataframe div .table-wrap button svelte-virtual-table-viewport table tbody tr td .cell-wrap input').forEach(i => i.setAttribute("readonly", "true")); | |
}); | |
// define what element should be observed by the observer | |
// and what types of mutations trigger the callback | |
observer.observe(document, { | |
subtree: true, | |
childList: true | |
}); | |
} | |
""" | |
text_functions_df = pd.read_csv("text_functions.tsv", delimiter="\t") | |
def prepare_function(func: str, placeholder: str, column_name: str) -> str: | |
if "(" in func: | |
prepared_func = func.split("(") | |
prepared_func[1] = prepared_func[1].replace(placeholder, column_name, 1) | |
prepared_func = "(".join(prepared_func) | |
else: | |
prepared_func = func.replace(placeholder, column_name, 1) | |
return prepared_func | |
with gr.Blocks(css=css, js=js) as demo: | |
loading_codes_json = gr.JSON(visible=False) | |
dataset_subset_split_textbox = gr.Textbox(visible=False) | |
input_dataframe = gr.DataFrame(visible=False) | |
with gr.Group(): | |
with gr.Row(): | |
dataset_dropdown = gr.Dropdown(label="Open Dataset", allow_custom_value=True, scale=10) | |
subset_dropdown = gr.Dropdown(info="Subset", allow_custom_value=True, show_label=False, visible=False, elem_classes="transparent-dropdown") | |
split_dropdown = gr.Dropdown(info="Split", allow_custom_value=True, show_label=False, visible=False, elem_classes="transparent-dropdown") | |
gr.LoginButton() | |
with gr.Row(): | |
transform_dropdowns = [gr.Dropdown(choices=[column_name] + [prepare_function(text_func, "string", column_name) for text_func in text_functions_df.Name if "string" in text_func], value=column_name, container=False, interactive=True, allow_custom_value=True, visible=True) for column_name in EMPTY_DF.columns] | |
transform_dropdowns += [gr.Dropdown(choices=[None], value=None, container=False, interactive=True, allow_custom_value=True, visible=False) for _ in range(MAX_NUM_COLUMNS - len(transform_dropdowns))] | |
dataframe = gr.DataFrame(EMPTY_DF, column_widths=[f"{1/len(EMPTY_DF.columns):.0%}"] * len(EMPTY_DF.columns), interactive=True, elem_classes="readonly-dataframe") | |
def _fetch_datasets(request: gr.Request, oauth_token: gr.OAuthToken | None): | |
api = HfApi(token=oauth_token.token if oauth_token else None) | |
datasets = list(api.list_datasets(limit=3, sort="trendingScore", direction=-1, filter=["format:parquet"])) | |
if oauth_token and (user := api.whoami().get("user")): | |
datasets += list(api.list_datasets(limit=3, sort="trendingScore", direction=-1, filter=["format:parquet"], author=user)) | |
dataset = request.query_params.get("dataset") or datasets[0].id | |
return {dataset_dropdown: gr.Dropdown(choices=[dataset.id for dataset in datasets], value=dataset)} | |
def _fetch_read_parquet_loading(dataset: str): | |
if dataset and "/" not in dataset.strip().strip("/"): | |
return [] | |
resp = requests.get(f"https://datasets-server.huggingface.co/compatible-libraries?dataset={dataset}", timeout=3).json() | |
return ([lib["loading_codes"] for lib in resp.get("libraries", []) if lib["function"] in READ_PARQUET_FUNCTIONS] or [[]])[0] or [] | |
def _show_subset_dropdown(loading_codes: list[dict]): | |
subsets = [loading_code["config_name"] for loading_code in loading_codes] | |
subset = (subsets or [""])[0] | |
splits = ([list(loading_code["arguments"]["splits"]) for loading_code in loading_codes if loading_code["config_name"] == subset] or [[]])[0] | |
split = (splits or [""])[0] | |
return gr.Dropdown(subsets, value=subset, visible=len(subsets) > 1), gr.Dropdown(splits, value=split, visible=len(splits) > 1) | |
def _show_split_dropdown(loading_codes: list[dict], subset: str): | |
splits = ([list(loading_code["arguments"]["splits"]) for loading_code in loading_codes if loading_code["config_name"] == subset] or [[]])[0] | |
split = (splits or [""])[0] | |
return gr.Dropdown(splits, value=split, visible=len(splits) > 1) | |
def _set_input_dataframe(dataset: str, subset: str, split: str, loading_codes: list[dict]) -> pd.DataFrame: | |
pattern = ([loading_code["arguments"]["splits"][split] for loading_code in loading_codes if loading_code["config_name"] == subset] or [None])[0] | |
if dataset and subset and split and pattern: | |
df = duckdb.sql(f"SELECT * FROM 'hf://datasets/{dataset}/{pattern}' LIMIT 10").df() | |
return gr.DataFrame(df, column_widths=[f"{1/len(df.columns):.0%}"] * len(df.columns)) | |
else: | |
return gr.DataFrame(EMPTY_DF, column_widths=[f"{1/len(EMPTY_DF.columns):.0%}"] * len(EMPTY_DF.columns)) | |
def _set_transforms(input_df: pd.DataFrame): | |
new_transform_dropdowns = [gr.Dropdown(choices=[column_name] + [prepare_function(text_func, "string", column_name) for text_func in text_functions_df.Name if "string" in text_func], value=column_name, container=False, interactive=True, allow_custom_value=True, visible=True) for column_name in input_df.columns] | |
new_transform_dropdowns += [gr.Dropdown(choices=[None], value=None, container=False, interactive=True, allow_custom_value=True, visible=False) for _ in range(MAX_NUM_COLUMNS - len(new_transform_dropdowns))] | |
return new_transform_dropdowns | |
def _set_dataframe(input_df: pd.DataFrame, *transforms: tuple[str], column_index: int): | |
try: | |
print(f"SELECT {', '.join(transform for transform in transforms if transform)} FROM input_df;") | |
# return input_df | |
return duckdb.sql(f"SELECT {', '.join(transform for transform in transforms if transform)} FROM input_df;") | |
except Exception as e: | |
raise gr.Error(f"{type(e).__name__}: {e}") | |
for column_index, transform_dropdown in enumerate(transform_dropdowns): | |
transform_dropdown.change(partial(_set_dataframe, column_index=column_index), inputs=[input_dataframe] + transform_dropdowns, outputs=dataframe) | |
if __name__ == "__main__": | |
demo.launch() | |