document-qa / document_qa /document_qa_engine.py
lfoppiano's picture
include title, authors and year in the data store
60c4caf
raw
history blame
12.3 kB
import copy
import json
import os
from pathlib import Path
from typing import Union, Any
from grobid_client.grobid_client import GrobidClient
from langchain.chains import create_extraction_chain
from langchain.chains.question_answering import load_qa_chain
from langchain.prompts import SystemMessagePromptTemplate, HumanMessagePromptTemplate, ChatPromptTemplate
from langchain.retrievers import MultiQueryRetriever
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain.vectorstores import Chroma
from tqdm import tqdm
from document_qa.grobid_processors import GrobidProcessor
class DocumentQAEngine:
llm = None
qa_chain_type = None
embedding_function = None
embeddings_dict = {}
embeddings_map_from_md5 = {}
embeddings_map_to_md5 = {}
def __init__(self,
llm,
embedding_function,
qa_chain_type="stuff",
embeddings_root_path=None,
grobid_url=None,
):
self.embedding_function = embedding_function
self.llm = llm
self.chain = load_qa_chain(llm, chain_type=qa_chain_type)
if embeddings_root_path is not None:
self.embeddings_root_path = embeddings_root_path
if not os.path.exists(embeddings_root_path):
os.makedirs(embeddings_root_path)
else:
self.load_embeddings(self.embeddings_root_path)
if grobid_url:
self.grobid_url = grobid_url
grobid_client = GrobidClient(
grobid_server=self.grobid_url,
batch_size=1000,
coordinates=["p"],
sleep_time=5,
timeout=60,
check_server=True
)
self.grobid_processor = GrobidProcessor(grobid_client)
def load_embeddings(self, embeddings_root_path: Union[str, Path]) -> None:
"""
Load the embeddings assuming they are all persisted and stored in a single directory.
The root path of the embeddings containing one data store for each document in each subdirectory
"""
embeddings_directories = [f for f in os.scandir(embeddings_root_path) if f.is_dir()]
if len(embeddings_directories) == 0:
print("No available embeddings")
return
for embedding_document_dir in embeddings_directories:
self.embeddings_dict[embedding_document_dir.name] = Chroma(persist_directory=embedding_document_dir.path,
embedding_function=self.embedding_function)
filename_list = list(Path(embedding_document_dir).glob('*.storage_filename'))
if filename_list:
filenam = filename_list[0].name.replace(".storage_filename", "")
self.embeddings_map_from_md5[embedding_document_dir.name] = filenam
self.embeddings_map_to_md5[filenam] = embedding_document_dir.name
print("Embedding loaded: ", len(self.embeddings_dict.keys()))
def get_loaded_embeddings_ids(self):
return list(self.embeddings_dict.keys())
def get_md5_from_filename(self, filename):
return self.embeddings_map_to_md5[filename]
def get_filename_from_md5(self, md5):
return self.embeddings_map_from_md5[md5]
def query_document(self, query: str, doc_id, output_parser=None, context_size=4, extraction_schema=None,
verbose=False, memory=None) -> (
Any, str):
# self.load_embeddings(self.embeddings_root_path)
if verbose:
print(query)
response = self._run_query(doc_id, query, context_size=context_size, memory=memory)
response = response['output_text'] if 'output_text' in response else response
if verbose:
print(doc_id, "->", response)
if output_parser:
try:
return self._parse_json(response, output_parser), response
except Exception as oe:
print("Failing to parse the response", oe)
return None, response
elif extraction_schema:
try:
chain = create_extraction_chain(extraction_schema, self.llm)
parsed = chain.run(response)
return parsed, response
except Exception as oe:
print("Failing to parse the response", oe)
return None, response
else:
return None, response
def query_storage(self, query: str, doc_id, context_size=4):
documents = self._get_context(doc_id, query, context_size)
context_as_text = [doc.page_content for doc in documents]
return context_as_text
def _parse_json(self, response, output_parser):
system_message = "You are an useful assistant expert in materials science, physics, and chemistry " \
"that can process text and transform it to JSON."
human_message = """Transform the text between three double quotes in JSON.\n\n\n\n
{format_instructions}\n\nText: \"\"\"{text}\"\"\""""
system_message_prompt = SystemMessagePromptTemplate.from_template(system_message)
human_message_prompt = HumanMessagePromptTemplate.from_template(human_message)
prompt_template = ChatPromptTemplate.from_messages([system_message_prompt, human_message_prompt])
results = self.llm(
prompt_template.format_prompt(
text=response,
format_instructions=output_parser.get_format_instructions()
).to_messages()
)
parsed_output = output_parser.parse(results.content)
return parsed_output
def _run_query(self, doc_id, query, memory=None, context_size=4):
relevant_documents = self._get_context(doc_id, query, context_size)
if memory:
return self.chain.run(input_documents=relevant_documents,
question=query)
else:
return self.chain.run(input_documents=relevant_documents,
question=query,
memory=memory)
# return self.chain({"input_documents": relevant_documents, "question": prompt_chat_template}, return_only_outputs=True)
def _get_context(self, doc_id, query, context_size=4):
db = self.embeddings_dict[doc_id]
retriever = db.as_retriever(search_kwargs={"k": context_size})
relevant_documents = retriever.get_relevant_documents(query)
return relevant_documents
def get_all_context_by_document(self, doc_id):
"""Return the full context from the document"""
db = self.embeddings_dict[doc_id]
docs = db.get()
return docs['documents']
def _get_context_multiquery(self, doc_id, query, context_size=4):
db = self.embeddings_dict[doc_id].as_retriever(search_kwargs={"k": context_size})
multi_query_retriever = MultiQueryRetriever.from_llm(retriever=db, llm=self.llm)
relevant_documents = multi_query_retriever.get_relevant_documents(query)
return relevant_documents
def get_text_from_document(self, pdf_file_path, chunk_size=-1, perc_overlap=0.1, include=(), verbose=False):
"""
Extract text from documents using Grobid, if chunk_size is < 0 it keeps each paragraph separately
"""
if verbose:
print("File", pdf_file_path)
filename = Path(pdf_file_path).stem
structure = self.grobid_processor.process_structure(pdf_file_path)
biblio = structure['biblio']
biblio['filename'] = filename.replace(" ", "_")
if verbose:
print("Generating embeddings for:", hash, ", filename: ", filename)
texts = []
metadatas = []
ids = []
if chunk_size < 0:
for passage in structure['passages']:
biblio_copy = copy.copy(biblio)
if len(str.strip(passage['text'])) > 0:
texts.append(passage['text'])
biblio_copy['type'] = passage['type']
biblio_copy['section'] = passage['section']
biblio_copy['subSection'] = passage['subSection']
metadatas.append(biblio_copy)
ids.append(passage['passage_id'])
else:
document_text = " ".join([passage['text'] for passage in structure['passages']])
# text_splitter = CharacterTextSplitter.from_tiktoken_encoder(
text_splitter = RecursiveCharacterTextSplitter.from_tiktoken_encoder(
chunk_size=chunk_size,
chunk_overlap=chunk_size * perc_overlap
)
texts = text_splitter.split_text(document_text)
metadatas = [biblio for _ in range(len(texts))]
ids = [id for id, t in enumerate(texts)]
if "biblio" in include:
biblio_metadata = copy.copy(biblio)
biblio_metadata['type'] = "biblio"
biblio_metadata['section'] = "header"
for key in ['title', 'authors', 'year']:
if key in biblio_metadata:
texts.append("{}: {}".format(key, biblio_metadata[key]))
metadatas.append(biblio_metadata)
ids.append(key)
return texts, metadatas, ids
def create_memory_embeddings(self, pdf_path, doc_id=None, chunk_size=500, perc_overlap=0.1, include_biblio=False):
include = ["biblio"] if include_biblio else []
texts, metadata, ids = self.get_text_from_document(
pdf_path,
chunk_size=chunk_size,
perc_overlap=perc_overlap,
include=include)
if doc_id:
hash = doc_id
else:
hash = metadata[0]['hash']
if hash not in self.embeddings_dict.keys():
self.embeddings_dict[hash] = Chroma.from_texts(texts, embedding=self.embedding_function, metadatas=metadata,
collection_name=hash)
else:
self.embeddings_dict[hash].delete(ids=self.embeddings_dict[hash].get()['ids'])
self.embeddings_dict[hash] = Chroma.from_texts(texts, embedding=self.embedding_function, metadatas=metadata,
collection_name=hash)
self.embeddings_root_path = None
return hash
def create_embeddings(self, pdfs_dir_path: Path, chunk_size=500, perc_overlap=0.1, include_biblio=False):
input_files = []
for root, dirs, files in os.walk(pdfs_dir_path, followlinks=False):
for file_ in files:
if not (file_.lower().endswith(".pdf")):
continue
input_files.append(os.path.join(root, file_))
for input_file in tqdm(input_files, total=len(input_files), unit='document',
desc="Grobid + embeddings processing"):
md5 = self.calculate_md5(input_file)
data_path = os.path.join(self.embeddings_root_path, md5)
if os.path.exists(data_path):
print(data_path, "exists. Skipping it ")
continue
include = ["biblio"] if include_biblio else []
texts, metadata, ids = self.get_text_from_document(
input_file,
chunk_size=chunk_size,
perc_overlap=perc_overlap,
include=include)
filename = metadata[0]['filename']
vector_db_document = Chroma.from_texts(texts,
metadatas=metadata,
embedding=self.embedding_function,
persist_directory=data_path)
vector_db_document.persist()
with open(os.path.join(data_path, filename + ".storage_filename"), 'w') as fo:
fo.write("")
@staticmethod
def calculate_md5(input_file: Union[Path, str]):
import hashlib
md5_hash = hashlib.md5()
with open(input_file, 'rb') as fi:
md5_hash.update(fi.read())
return md5_hash.hexdigest().upper()