File size: 8,751 Bytes
e8ebf39
 
 
 
 
844c34d
452072e
 
 
e8ebf39
 
844c34d
e8ebf39
 
 
 
 
 
844c34d
 
e8ebf39
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b2f5314
844c34d
 
 
 
b2f5314
 
844c34d
 
b2f5314
844c34d
b2f5314
844c34d
 
e8ebf39
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b2f5314
e8ebf39
844c34d
 
 
 
 
 
b2f5314
 
844c34d
 
 
b2f5314
844c34d
 
b2f5314
 
844c34d
b2f5314
844c34d
 
b2f5314
 
e8ebf39
844c34d
e8ebf39
 
 
 
 
 
 
844c34d
e8ebf39
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
844c34d
 
e8ebf39
844c34d
e8ebf39
 
 
 
 
 
844c34d
e8ebf39
 
844c34d
e8ebf39
 
 
 
 
 
 
 
b2f5314
e8ebf39
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
import os
from hashlib import blake2b
from tempfile import NamedTemporaryFile

import dotenv
from langchain.llms.huggingface_hub import HuggingFaceHub

dotenv.load_dotenv(override=True)

import streamlit as st
from langchain.chat_models import PromptLayerChatOpenAI
from langchain.embeddings import OpenAIEmbeddings, HuggingFaceEmbeddings

from document_qa_engine import DocumentQAEngine

if 'rqa' not in st.session_state:
    st.session_state['rqa'] = None

if 'api_key' not in st.session_state:
    st.session_state['api_key'] = False

if 'doc_id' not in st.session_state:
    st.session_state['doc_id'] = None

if 'loaded_embeddings' not in st.session_state:
    st.session_state['loaded_embeddings'] = None

if 'hash' not in st.session_state:
    st.session_state['hash'] = None

if 'git_rev' not in st.session_state:
    st.session_state['git_rev'] = "unknown"
    if os.path.exists("revision.txt"):
        with open("revision.txt", 'r') as fr:
            from_file = fr.read()
            st.session_state['git_rev'] = from_file if len(from_file) > 0 else "unknown"

if "messages" not in st.session_state:
    st.session_state.messages = []


def new_file():
    st.session_state['loaded_embeddings'] = None
    st.session_state['doc_id'] = None


@st.cache_resource
def init_qa(model):
    if model == 'chatgpt-3.5-turbo':
        chat = PromptLayerChatOpenAI(model_name="gpt-3.5-turbo",
                                     temperature=0,
                                     return_pl_id=True,
                                     pl_tags=["streamlit", "chatgpt"])
        embeddings = OpenAIEmbeddings()
    elif model == 'mistral-7b-instruct-v0.1':
        chat = HuggingFaceHub(repo_id="mistralai/Mistral-7B-Instruct-v0.1",
                              model_kwargs={"temperature": 0.01, "max_length": 4096, "max_new_tokens": 2048})
        embeddings = HuggingFaceEmbeddings(
            model_name="all-MiniLM-L6-v2")

    return DocumentQAEngine(chat, embeddings, grobid_url=os.environ['GROBID_URL'])


def get_file_hash(fname):
    hash_md5 = blake2b()
    with open(fname, "rb") as f:
        for chunk in iter(lambda: f.read(4096), b""):
            hash_md5.update(chunk)
    return hash_md5.hexdigest()


def play_old_messages():
    if st.session_state['messages']:
        for message in st.session_state['messages']:
            if message['role'] == 'user':
                with st.chat_message("user"):
                    st.markdown(message['content'])
            elif message['role'] == 'assistant':
                with st.chat_message("assistant"):
                    if mode == "LLM":
                        st.markdown(message['content'])
                    else:
                        st.write(message['content'])

is_api_key_provided = st.session_state['api_key']

model = st.sidebar.radio("Model", ("chatgpt-3.5-turbo", "mistral-7b-instruct-v0.1"),
                         index=1,
                         captions=[
                             "ChatGPT 3.5 Turbo + Ada-002-text (embeddings)",
                             "Mistral-7B-Instruct-V0.1 + Sentence BERT (embeddings)"
                         ],
                         help="Select the model you want to use.",
                         disabled=is_api_key_provided)

if not st.session_state['api_key']:
    if model == 'mistral-7b-instruct-v0.1':
        api_key = st.sidebar.text_input('Huggingface API Key') if 'HUGGINGFACEHUB_API_TOKEN' not in os.environ else os.environ['HUGGINGFACEHUB_API_TOKEN']
        if api_key:
            st.session_state['api_key'] = is_api_key_provided = True
            os.environ["HUGGINGFACEHUB_API_TOKEN"] = api_key
            st.session_state['rqa'] = init_qa(model)
    elif model == 'chatgpt-3.5-turbo':
        api_key = st.sidebar.text_input('OpenAI API Key') if 'OPENAI_API_KEY' not in os.environ else os.environ['OPENAI_API_KEY']
        if api_key:
            st.session_state['api_key'] = is_api_key_provided = True
            os.environ['OPENAI_API_KEY'] = api_key
            st.session_state['rqa'] = init_qa(model)
else:
    is_api_key_provided = st.session_state['api_key']

st.title("πŸ“ Document insight Q&A")
st.subheader("Upload a PDF document, ask questions, get insights.")

upload_col, radio_col, context_col = st.columns([7, 2, 2])
with upload_col:
    uploaded_file = st.file_uploader("Upload an article", type=("pdf", "txt"), on_change=new_file,
                                     disabled=not is_api_key_provided,
                                     help="The file will be uploaded to Grobid, extracted the text and calculated "
                                          "embeddings of each paragraph which are then stored to a Db for be picked "
                                          "to answer specific questions. ")
with radio_col:
    mode = st.radio("Query mode", ("LLM", "Embeddings"), disabled=not uploaded_file, index=0,
                    help="LLM will respond the question, Embedding will show the "
                         "paragraphs relevant to the question in the paper.")
with context_col:
    context_size = st.slider("Context size", 3, 10, value=4,
                             help="Number of paragraphs to consider when answering a question",
                             disabled=not uploaded_file)

question = st.chat_input(
    "Ask something about the article",
    # placeholder="Can you give me a short summary?",
    disabled=not uploaded_file
)

with st.sidebar:
    st.header("Documentation")
    st.markdown("https://github.com/lfoppiano/document-qa")
    st.markdown("""After entering your API Key (Open AI or Huggingface). Upload a scientific article as PDF document, click on the designated button and select the file from your device.""")

    st.markdown(
        """After uploading, please wait for the PDF to be processed. You will see a spinner or loading indicator while the processing is in progress. Once the spinner stops, you can proceed to ask your questions.""")

    st.markdown("**Revision number**: [" + st.session_state[
        'git_rev'] + "](https://github.com/lfoppiano/grobid-magneto/commit/" + st.session_state['git_rev'] + ")")

    st.header("Query mode (Advanced use)")
    st.markdown(
        """By default, the mode is set to LLM (Language Model) which enables question/answering. You can directly ask questions related to the PDF content, and the system will provide relevant answers.""")

    st.markdown(
        """If you switch the mode to "Embedding," the system will return specific paragraphs from the document that are semantically similar to your query. This mode focuses on providing relevant excerpts rather than answering specific questions.""")

if uploaded_file and not st.session_state.loaded_embeddings:
    with st.spinner('Reading file, calling Grobid, and creating memory embeddings...'):
        binary = uploaded_file.getvalue()
        tmp_file = NamedTemporaryFile()
        tmp_file.write(bytearray(binary))
        # hash = get_file_hash(tmp_file.name)[:10]
        st.session_state['doc_id'] = hash = st.session_state['rqa'].create_memory_embeddings(tmp_file.name, chunk_size=250, perc_overlap=0.1)
        st.session_state['loaded_embeddings'] = True

    # timestamp = datetime.utcnow()

if st.session_state.loaded_embeddings and question and len(question) > 0 and st.session_state.doc_id:
    for message in st.session_state.messages:
        with st.chat_message(message["role"]):
            if message['mode'] == "LLM":
                st.markdown(message["content"])
            elif message['mode'] == "Embeddings":
                st.write(message["content"])

    text_response = None
    if mode == "Embeddings":
        text_response = st.session_state['rqa'].query_storage(question, st.session_state.doc_id,
                                                              context_size=context_size)
    elif mode == "LLM":
        _, text_response = st.session_state['rqa'].query_document(question, st.session_state.doc_id,
                                                                  context_size=context_size)

    if not text_response:
        st.error("Something went wrong. Contact Luca Foppiano ([email protected]) to report the issue.")

    with st.chat_message("user"):
        st.markdown(question)
        st.session_state.messages.append({"role": "user", "mode": mode, "content": question})

    with st.chat_message("assistant"):
        if mode == "LLM":
            st.markdown(text_response)
        else:
            st.write(text_response)
        st.session_state.messages.append({"role": "assistant", "mode": mode, "content": text_response})

elif st.session_state.loaded_embeddings and st.session_state.doc_id:
    play_old_messages()