File size: 3,369 Bytes
d347764
 
 
 
 
 
 
d1f4b94
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d347764
 
 
 
 
 
 
d1f4b94
d347764
d1f4b94
d347764
 
d1f4b94
 
d347764
 
 
d1f4b94
d347764
 
 
 
 
 
 
 
 
 
 
d1f4b94
 
d347764
 
 
 
 
f805e49
 
c6f1d54
d1f4b94
f805e49
 
 
c737803
 
 
d347764
d1f4b94
d347764
f805e49
 
d347764
c737803
 
 
d1f4b94
c737803
 
 
 
 
 
 
3946ba6
c737803
d1f4b94
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
import gradio as gr
import numpy as np
import torch
from datasets import load_dataset

from transformers import SpeechT5ForTextToSpeech, SpeechT5HifiGan, SpeechT5Processor, pipeline

speaker_embedding_path = "./speaker_embedding.npy"

replacements = [
    ("&", "og"),
    ("\r", " "),
    ("´", ""),
    ("\\", ""),
    ("¨", " "),
    ("Å", "AA"),
    ("Æ", "AE"),
    ("É", "E"),
    ("Ö", "OE"),
    ("Ø", "OE"),
    ("á", "a"),
    ("ä", "ae"),
    ("å", "aa"),
    ("è", "e"),
    ("î", "i"),
    ("ô", "oe"),
    ("ö", "oe"),
    ("ø", "oe"),
    ("ü", "y"),
]


def replace_danish_letters(text):
    for src, dst in replacements:
        text = text.replace(src, dst)
    return text

device = "cuda:0" if torch.cuda.is_available() else "cpu"

# load speech translation checkpoint
asr_pipe = pipeline("automatic-speech-recognition", model="openai/whisper-base", device=device)

# load text-to-speech checkpoint and speaker embeddings
processor = SpeechT5Processor.from_pretrained("JackismyShephard/speecht5_tts-finetuned-nst-da")

model = SpeechT5ForTextToSpeech.from_pretrained("JackismyShephard/speecht5_tts-finetuned-nst-da").to(device)
vocoder = SpeechT5HifiGan.from_pretrained("microsoft/speecht5_hifigan").to(device)

speaker_embedding = np.load(speaker_embedding_path)
speaker_embeddings = torch.tensor(speaker_embedding).unsqueeze(0)


def translate(audio):
    outputs = asr_pipe(audio, max_new_tokens=256, generate_kwargs={"task": "transcribe", "language": "da"})
    return outputs["text"]


def synthesise(text):
    inputs = processor(text=text, return_tensors="pt")
    speech = model.generate_speech(inputs["input_ids"].to(device), speaker_embeddings.to(device), vocoder=vocoder)
    return speech.cpu()


def speech_to_speech_translation(audio):
    translated_text = translate(audio)
    translated_text = replace_danish_letters(translated_text)
    print(translated_text)
    synthesised_speech = synthesise(translated_text)
    synthesised_speech = (synthesised_speech.numpy() * 32767).astype(np.int16)
    return 16000, synthesised_speech


title = "Cascaded STST"
description = """
Demo for cascaded speech-to-speech translation (STST), mapping from source speech in any language to target speech in English. Demo uses OpenAI's [Whisper Base](https://huggingface.co/openai/whisper-base) model for speech translation, and Microsoft's
[SpeechT5 TTS](https://huggingface.co/microsoft/speecht5_tts) model fine-tuned by [JackismyShephard](https://huggingface.co/JackismyShephard) for Danish for text-to-speech:
![Cascaded STST](https://huggingface.co/datasets/huggingface-course/audio-course-images/resolve/main/s2st_cascaded.png "Diagram of cascaded speech to speech translation")
"""

demo = gr.Blocks()

mic_translate = gr.Interface(
    fn=speech_to_speech_translation,
    inputs=gr.Audio(sources=["microphone"], type="filepath"),
    outputs=gr.Audio(label="Generated Speech", type="numpy"),
    title=title,
    description=description,
)

file_translate = gr.Interface(
    fn=speech_to_speech_translation,
    inputs=gr.Audio(sources=["upload"], type="filepath"),
    outputs=gr.Audio(label="Generated Speech", type="numpy"),
    examples=[["./example.wav"]],
    title=title,
    description=description,
)

with demo:
    gr.TabbedInterface([mic_translate, file_translate], ["Microphone", "Audio File"])

demo.launch()