|
from requests import post |
|
from time import time |
|
|
|
class T3nsorResponse: |
|
|
|
class Completion: |
|
|
|
class Choices: |
|
def __init__(self, choice: dict) -> None: |
|
self.text = choice['text'] |
|
self.content = self.text.encode() |
|
self.index = choice['index'] |
|
self.logprobs = choice['logprobs'] |
|
self.finish_reason = choice['finish_reason'] |
|
|
|
def __repr__(self) -> str: |
|
return f'''<__main__.APIResponse.Completion.Choices(\n text = {self.text.encode()},\n index = {self.index},\n logprobs = {self.logprobs},\n finish_reason = {self.finish_reason})object at 0x1337>''' |
|
|
|
def __init__(self, choices: dict) -> None: |
|
self.choices = [self.Choices(choice) for choice in choices] |
|
|
|
class Usage: |
|
def __init__(self, usage_dict: dict) -> None: |
|
self.prompt_tokens = usage_dict['prompt_chars'] |
|
self.completion_tokens = usage_dict['completion_chars'] |
|
self.total_tokens = usage_dict['total_chars'] |
|
|
|
def __repr__(self): |
|
return f'''<__main__.APIResponse.Usage(\n prompt_tokens = {self.prompt_tokens},\n completion_tokens = {self.completion_tokens},\n total_tokens = {self.total_tokens})object at 0x1337>''' |
|
|
|
def __init__(self, response_dict: dict) -> None: |
|
|
|
self.response_dict = response_dict |
|
self.id = response_dict['id'] |
|
self.object = response_dict['object'] |
|
self.created = response_dict['created'] |
|
self.model = response_dict['model'] |
|
self.completion = self.Completion(response_dict['choices']) |
|
self.usage = self.Usage(response_dict['usage']) |
|
|
|
def json(self) -> dict: |
|
return self.response_dict |
|
|
|
class Completion: |
|
model = { |
|
'model': { |
|
'id' : 'gpt-3.5-turbo', |
|
'name' : 'Default (GPT-3.5)' |
|
} |
|
} |
|
|
|
def create( |
|
prompt: str = 'hello world', |
|
messages: list = []) -> T3nsorResponse: |
|
|
|
response = post('https://www.t3nsor.tech/api/chat', json = Completion.model | { |
|
'messages' : messages, |
|
'key' : '', |
|
'prompt' : prompt |
|
}) |
|
|
|
return T3nsorResponse({ |
|
'id' : f'cmpl-1337-{int(time())}', |
|
'object' : 'text_completion', |
|
'created': int(time()), |
|
'model' : Completion.model, |
|
'choices': [{ |
|
'text' : response.text, |
|
'index' : 0, |
|
'logprobs' : None, |
|
'finish_reason' : 'stop' |
|
}], |
|
'usage': { |
|
'prompt_chars' : len(prompt), |
|
'completion_chars' : len(response.text), |
|
'total_chars' : len(prompt) + len(response.text) |
|
} |
|
}) |
|
|
|
class StreamCompletion: |
|
model = { |
|
'model': { |
|
'id' : 'gpt-3.5-turbo', |
|
'name' : 'Default (GPT-3.5)' |
|
} |
|
} |
|
|
|
def create( |
|
prompt: str = 'hello world', |
|
messages: list = []) -> T3nsorResponse: |
|
|
|
response = post('https://www.t3nsor.tech/api/chat', stream = True, json = Completion.model | { |
|
'messages' : messages, |
|
'key' : '', |
|
'prompt' : prompt |
|
}) |
|
|
|
for chunk in response.iter_content(chunk_size = 2046): |
|
yield T3nsorResponse({ |
|
'id' : f'cmpl-1337-{int(time())}', |
|
'object' : 'text_completion', |
|
'created': int(time()), |
|
'model' : Completion.model, |
|
|
|
'choices': [{ |
|
'text' : chunk.decode(), |
|
'index' : 0, |
|
'logprobs' : None, |
|
'finish_reason' : 'stop' |
|
}], |
|
|
|
'usage': { |
|
'prompt_chars' : len(prompt), |
|
'completion_chars' : len(chunk.decode()), |
|
'total_chars' : len(prompt) + len(chunk.decode()) |
|
} |
|
}) |