File size: 5,683 Bytes
6c64e45
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
from urllib.parse import quote
from tls_client   import Session
from time         import time
from datetime     import datetime

client         = Session(client_identifier='chrome110')
client.headers = {
    'authority': 'www.phind.com',
    'accept': '*/*',
    'accept-language': 'en,fr-FR;q=0.9,fr;q=0.8,es-ES;q=0.7,es;q=0.6,en-US;q=0.5,am;q=0.4,de;q=0.3',
    'content-type': 'application/json',
    'origin': 'https://www.phind.com',
    'referer': 'https://www.phind.com/search',
    'sec-ch-ua': '"Chromium";v="110", "Google Chrome";v="110", "Not:A-Brand";v="99"',
    'sec-ch-ua-mobile': '?0',
    'sec-ch-ua-platform': '"macOS"',
    'sec-fetch-dest': 'empty',
    'sec-fetch-mode': 'cors',
    'sec-fetch-site': 'same-origin',
    'user-agent': 'Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_7) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/110.0.0.0 Safari/537.36',
}

class PhindResponse:
    
    class Completion:
        
        class Choices:
            def __init__(self, choice: dict) -> None:
                self.text           = choice['text']
                self.content        = self.text.encode()
                self.index          = choice['index']
                self.logprobs       = choice['logprobs']
                self.finish_reason  = choice['finish_reason']
                
            def __repr__(self) -> str:
                return f'''<__main__.APIResponse.Completion.Choices(\n    text           = {self.text.encode()},\n    index          = {self.index},\n    logprobs       = {self.logprobs},\n    finish_reason  = {self.finish_reason})object at 0x1337>'''

        def __init__(self, choices: dict) -> None:
            self.choices = [self.Choices(choice) for choice in choices]

    class Usage:
        def __init__(self, usage_dict: dict) -> None:
            self.prompt_tokens      = usage_dict['prompt_tokens']
            self.completion_tokens  = usage_dict['completion_tokens']
            self.total_tokens       = usage_dict['total_tokens']

        def __repr__(self):
            return f'''<__main__.APIResponse.Usage(\n    prompt_tokens      = {self.prompt_tokens},\n    completion_tokens  = {self.completion_tokens},\n    total_tokens       = {self.total_tokens})object at 0x1337>'''
    
    def __init__(self, response_dict: dict) -> None:
        
        self.response_dict  = response_dict
        self.id             = response_dict['id']
        self.object         = response_dict['object']
        self.created        = response_dict['created']
        self.model          = response_dict['model']
        self.completion     = self.Completion(response_dict['choices'])
        self.usage          = self.Usage(response_dict['usage'])

    def json(self) -> dict:
        return self.response_dict


class Search:
    def create(prompt: str, actualSearch: bool = True, language: str = 'en') -> dict: # None = no search
        if not actualSearch:
            return {
                '_type': 'SearchResponse',
                'queryContext': {
                    'originalQuery': prompt
                },
                'webPages': {
                    'webSearchUrl': f'https://www.bing.com/search?q={quote(prompt)}',
                    'totalEstimatedMatches': 0,
                    'value': []
                },
                'rankingResponse': {
                    'mainline': {
                        'items': []
                    }
                }
            }
        
        return client.post('https://www.phind.com/api/bing/search', json = { 
            'q': prompt,
            'userRankList': {},
            'browserLanguage': language}).json()['rawBingResults']

class Completion:
    def create(
        model = 'gpt-4', 
        prompt: str = '', 
        results: dict = None, 
        creative: bool = False, 
        detailed: bool = False, 
        codeContext: str = '',
        language: str = 'en') -> PhindResponse:
        
        if results is None:
            results = Search.create(prompt, actualSearch = True)
        
        if len(codeContext) > 2999:
            raise ValueError('codeContext must be less than 3000 characters')
        
        models = {
            'gpt-4' : 'expert',
            'gpt-3.5-turbo' : 'intermediate',
            'gpt-3.5': 'intermediate',
        }
        
        json_data = {
            'question'    : prompt,
            'bingResults' : results, #response.json()['rawBingResults'],
            'codeContext' : codeContext,
            'options': {
                'skill'   : models[model],
                'date'    : datetime.now().strftime("%d/%m/%Y"),
                'language': language,
                'detailed': detailed,
                'creative': creative
            }
        }
        
        completion = ''
        response   = client.post('https://www.phind.com/api/infer/answer', json=json_data, timeout_seconds=200)
        for line in response.text.split('\r\n\r\n'):
            completion += (line.replace('data: ', ''))
            
        return  PhindResponse({
            'id'     : f'cmpl-1337-{int(time())}', 
            'object' : 'text_completion', 
            'created': int(time()), 
            'model'  : models[model], 
            'choices': [{
                    'text'          : completion, 
                    'index'         : 0, 
                    'logprobs'      : None, 
                    'finish_reason' : 'stop'
            }], 
            'usage': {
                'prompt_tokens'     : len(prompt), 
                'completion_tokens' : len(completion), 
                'total_tokens'      : len(prompt) + len(completion)
            }
        })