Spaces:
Runtime error
Runtime error
import json | |
from text_utils import * | |
import pandas as pd | |
from qa_model import * | |
from bm25_utils import * | |
from pairwise_model import * | |
import nltk | |
nltk.download('punkt') | |
df_wiki_windows = pd.read_csv("./processed/wikipedia_chungta_cleaned.csv") | |
df_wiki = pd.read_csv("./processed/wikipedia_chungta_short.csv") | |
df_wiki.title = df_wiki.title.apply(str) | |
entity_dict = json.load(open("./processed/entities.json")) | |
new_dict = dict() | |
for key, val in entity_dict.items(): | |
val = val.replace("wiki/", "").replace("_", " ") | |
entity_dict[key] = val | |
key = preprocess(key) | |
new_dict[key.lower()] = val | |
entity_dict.update(new_dict) | |
title2idx = dict([(x.strip(), y) for x, y in zip(df_wiki.title, df_wiki.index.values)]) | |
qa_model = QAEnsembleModel_modify("letrunglinh/qa_pnc", entity_dict) | |
pairwise_model_stage1 = PairwiseModel_modify("nguyenvulebinh/vi-mrc-base") | |
bm25_model_stage1 = BM25Gensim("./outputs/bm25_stage1/", entity_dict, title2idx) | |
def get_answer_e2e(question): | |
#Bm25 retrieval for top200 candidates | |
query = preprocess(question).lower() | |
top_n, bm25_scores = bm25_model_stage1.get_topk_stage1(query, topk=200) | |
titles = [preprocess(df_wiki_windows.title.values[i]) for i in top_n] | |
pre_texts = [preprocess(df_wiki_windows.text.values[i]) for i in top_n] | |
#Reranking with pairwise model for top10 | |
question = preprocess(question) | |
ranking_preds = pairwise_model_stage1.stage1_ranking(question, pre_texts) | |
ranking_scores = ranking_preds * bm25_scores | |
#Question answering | |
best_idxs = np.argsort(ranking_scores)[-10:] | |
ranking_scores = np.array(ranking_scores)[best_idxs] | |
texts = np.array(pre_texts)[best_idxs] | |
best_answer = qa_model(question, texts, ranking_scores) | |
if best_answer is None: | |
return pre_texts[0] | |
return best_answer | |
if __name__ == "__main__": | |
# result = get_answer_e2e("OKR là gì?") | |
# print(result) | |
gr.Interface(fn=get_answer_e2e, inputs=["text"], outputs=["textbox"]).launch() |