woowooftest1 / app.py
letianWoowoof's picture
Update app.py
4b6a3ce verified
import spaces # 必须在最顶部导入
import gradio as gr
import os
# 获取 Hugging Face 访问令牌
hf_token = os.getenv("HF_API_TOKEN")
# 定义基础模型名称
base_model_name = "WooWoof/WooWoof_AI_Vision16Bit"
# 定义 adapter 模型名称
adapter_model_name = "WooWoof/WooWoof_AI_Vision16Bit"
# 定义全局变量用于缓存模型和分词器
model = None
tokenizer = None
# 定义提示生成函数
def generate_prompt(instruction, input_text=""):
if input_text:
prompt = f"""### Instruction:
{instruction}
### Input:
{input_text}
### Response:
"""
else:
prompt = f"""### Instruction:
{instruction}
### Response:
"""
return prompt
# 定义生成响应的函数,并使用 @spaces.GPU 装饰
@spaces.GPU(duration=40) # 建议将 duration 增加到 120
def generate_response(instruction, input_text):
global model, tokenizer
if model is None:
print("开始加载模型...")
# 检查 bitsandbytes 是否已安装
import importlib.util
if importlib.util.find_spec("bitsandbytes") is None:
import subprocess
subprocess.call(["pip", "install", "--upgrade", "bitsandbytes"])
try:
# 在函数内部导入需要 GPU 的库
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM, BitsAndBytesConfig
from peft import PeftModel
# 创建量化配置
bnb_config = BitsAndBytesConfig(
load_in_4bit=True,
bnb_4bit_use_double_quant=True,
bnb_4bit_quant_type="nf4",
bnb_4bit_compute_dtype=torch.float16
)
# 加载分词器
tokenizer = AutoTokenizer.from_pretrained(base_model_name, use_auth_token=hf_token)
print("分词器加载成功。")
# 加载基础模型
base_model = AutoModelForCausalLM.from_pretrained(
base_model_name,
quantization_config=bnb_config,
device_map="auto",
use_auth_token=hf_token,
trust_remote_code=True
)
print("基础模型加载成功。")
# 加载适配器模型
model = PeftModel.from_pretrained(
base_model,
adapter_model_name,
torch_dtype=torch.float16,
use_auth_token=hf_token
)
print("适配器模型加载成功。")
# 设置 pad_token
tokenizer.pad_token = tokenizer.eos_token
model.config.pad_token_id = tokenizer.pad_token_id
# 切换到评估模式
model.eval()
print("模型已切换到评估模式。")
except Exception as e:
print("加载模型时出错:", e)
raise e
else:
# 在函数内部导入需要的库
import torch
# 检查 model 和 tokenizer 是否已正确加载
if model is None or tokenizer is None:
print("模型或分词器未正确加载。")
raise ValueError("模型或分词器未正确加载。")
# 生成提示
prompt = generate_prompt(instruction, input_text)
inputs = tokenizer(prompt, return_tensors="pt").to(model.device)
with torch.no_grad():
outputs = model.generate(
input_ids=inputs["input_ids"],
attention_mask=inputs.get("attention_mask"),
max_new_tokens=128,
temperature=0.7,
top_p=0.95,
do_sample=True,
)
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
response = response.split("### Response:")[-1].strip()
return response
# 创建 Gradio 接口
iface = gr.Interface(
fn=generate_response,
inputs=[
gr.Textbox(lines=2, placeholder="Instruction", label="Instruction"),
],
outputs="text",
title="WooWoof AI Vision",
allow_flagging="never"
)
# 启动 Gradio 接口
iface.launch(share=True)