pregbot / app_bak1.pyt
leonsimon23's picture
Create app_bak1.pyt
cd9fe42 verified
import gradio as gr
import requests
# 设置第三方 API 基本 URL
API_BASE_URL = "http://key.aistory.uk/v1/chat/completions" # 替换为你自己的API URL
API_KEY = "sk-HfD4NYIN6bq2DkSfIiUcciRvo9MkgMdFCsahP9NWEOUPHe8H" # 替换为你自己的 API 密钥
# 定义 AI 响应函数,调用第三方 API
def ai_response(message, chat_history):
# 定义系统提示词
system_prompt = "You are a helpful assistant. Please assist the user with their inquiries."
# 组合历史聊天记录和用户输入的信息
conversation = [{"role": "system", "content": system_prompt}]
for msg in chat_history:
conversation.append({"role": msg[0], "content": msg[1]})
conversation.append({"role": "user", "content": message})
# 构建请求体
payload = {
"model": "gpt-4o", # 使用 gpt-4o 模型(如果此模型为该 API 支持的模型)
"messages": conversation,
"max_tokens": 150
}
# 设置请求头,包括 API 密钥
headers = {
"Authorization": f"Bearer {API_KEY}",
"Content-Type": "application/json"
}
# 发送请求到第三方 API
try:
response = requests.post(API_BASE_URL, json=payload, headers=headers)
response.raise_for_status() # 如果响应状态码不是 2xx,会抛出异常
if response.status_code == 200:
# 获取 API 响应内容
response_data = response.json()
assistant_message = response_data['choices'][0]['message']['content']
# 返回新的聊天记录,转换为符合 gr.Chatbot 期望的元组格式
chat_history.append(("user", message))
chat_history.append(("assistant", assistant_message))
return chat_history
else:
# 如果请求失败,输出错误信息
return chat_history + [("assistant", f"API error: {response.status_code}, {response.text}")]
except requests.exceptions.RequestException as e:
# 捕获任何请求错误,并输出详细错误信息
return chat_history + [("assistant", f"Request failed: {str(e)}")]
# 创建 Gradio 应用
def create_interface():
with gr.Blocks() as demo:
# 创建一个 Column 布局,用于将聊天记录和输入框放在同一列
with gr.Column():
# 创建一个聊天机器人输出组件,用于显示对话
chat_output = gr.Chatbot()
# 创建一个文本框用于输入消息
message_input = gr.Textbox(label="请输入你的问题", placeholder="输入你的问题并按回车发送", lines=1)
# 提交按钮,发送用户消息并获取AI回复
message_input.submit(ai_response, inputs=[message_input, chat_output], outputs=[chat_output])
return demo
# 启动 Gradio 应用
demo = create_interface()
demo.launch()