Spaces:
Running
Running
import PIL.Image | |
import gradio as gr | |
import huggingface_hub | |
import onnxruntime as rt | |
import numpy as np | |
import cv2 | |
from PIL import ImageOps | |
providers = ['CUDAExecutionProvider', 'CPUExecutionProvider'] | |
model_path = huggingface_hub.hf_hub_download("skytnt/anime-seg", "isnetis.onnx") | |
rmbg_model = rt.InferenceSession(model_path, providers=providers) | |
def custom_background(background, foreground): | |
foreground = ImageOps.contain(foreground, background.size) | |
x = (background.size[0] - foreground.size[0]) // 2 | |
y = (background.size[1] - foreground.size[1]) // 2 | |
background.paste(foreground, (x, y), foreground) | |
return background | |
def get_mask(img, s=1024): | |
img = (img / 255).astype(np.float32) | |
h, w = h0, w0 = img.shape[:-1] | |
h, w = (s, int(s * w / h)) if h > w else (int(s * h / w), s) | |
ph, pw = s - h, s - w | |
img_input = np.zeros([s, s, 3], dtype=np.float32) | |
img_input[ph // 2:ph // 2 + h, pw // 2:pw // 2 + w] = cv2.resize(img, (w, h)) | |
img_input = np.transpose(img_input, (2, 0, 1)) | |
img_input = img_input[np.newaxis, :] | |
mask = rmbg_model.run(None, {'img': img_input})[0][0] | |
mask = np.transpose(mask, (1, 2, 0)) | |
mask = mask[ph // 2:ph // 2 + h, pw // 2:pw // 2 + w] | |
mask = cv2.resize(mask, (w0, h0))[:, :, np.newaxis] | |
return mask | |
def predict(image, new_background): | |
mask = get_mask(image) | |
image = (mask * image + 255 * (1 - mask)).astype(np.uint8) | |
mask = (mask * 255).astype(np.uint8) | |
image = np.concatenate([image, mask], axis=2, dtype=np.uint8) | |
mask = mask.repeat(3, axis=2) | |
if new_background is not None: | |
foreground = PIL.Image.fromarray(image) | |
return mask, custom_background(new_background, foreground) | |
return mask, image | |
footer = r""" | |
<center> | |
<b> | |
Demo based on <a href='https://github.com/SkyTNT/anime-segmentation'>SkyTNT Anime Segmentation</a> | |
</b> | |
</center> | |
""" | |
with gr.Blocks(title="Face Shine") as app: | |
gr.HTML("<center><h1>Anime Remove Background</h1></center>") | |
with gr.Row(): | |
with gr.Column(): | |
input_img = gr.Image(type="numpy", label="Input image") | |
new_img = gr.Image(type="pil", label="Custom background") | |
run_btn = gr.Button(variant="primary") | |
with gr.Column(): | |
with gr.Accordion(label="Image mask", open=False): | |
output_mask = gr.Image(label="mask") | |
output_img = gr.Image(type="pil", label="result") | |
run_btn.click(predict, [input_img, new_img], [output_mask, output_img]) | |
with gr.Row(): | |
examples_data = [[f"examples/{x:02d}.jpg"] for x in range(1, 4)] | |
examples = gr.Dataset(components=[input_img], samples=examples_data) | |
examples.click(lambda x: x[0], [examples], [input_img]) | |
with gr.Row(): | |
gr.HTML(footer) | |
app.queue() | |
app.launch(share=False, debug=True, show_error=True) | |