leonelhs's picture
init space
02c4dcb
from typing import Any, Dict, List, Optional
import cv2
import gradio
import facefusion.globals
from facefusion import wording
from facefusion.core import conditional_set_face_reference
from facefusion.face_cache import clear_faces_cache
from facefusion.typing import Frame, Face
from facefusion.vision import get_video_frame, count_video_frame_total, normalize_frame_color, resize_frame_dimension, read_static_image
from facefusion.face_analyser import get_one_face, clear_face_analyser
from facefusion.face_reference import get_face_reference, clear_face_reference
from facefusion.content_analyser import analyse_frame
from facefusion.processors.frame.core import load_frame_processor_module
from facefusion.utilities import is_video, is_image
from facefusion.uis.typing import ComponentName
from facefusion.uis.core import get_ui_component, register_ui_component
PREVIEW_IMAGE : Optional[gradio.Image] = None
PREVIEW_FRAME_SLIDER : Optional[gradio.Slider] = None
def render() -> None:
global PREVIEW_IMAGE
global PREVIEW_FRAME_SLIDER
preview_image_args: Dict[str, Any] =\
{
'label': wording.get('preview_image_label'),
'interactive': False
}
preview_frame_slider_args: Dict[str, Any] =\
{
'label': wording.get('preview_frame_slider_label'),
'step': 1,
'minimum': 0,
'maximum': 100,
'visible': False
}
conditional_set_face_reference()
source_face = get_one_face(read_static_image(facefusion.globals.source_path))
reference_face = get_face_reference() if 'reference' in facefusion.globals.face_selector_mode else None
if is_image(facefusion.globals.target_path):
target_frame = read_static_image(facefusion.globals.target_path)
preview_frame = process_preview_frame(source_face, reference_face, target_frame)
preview_image_args['value'] = normalize_frame_color(preview_frame)
if is_video(facefusion.globals.target_path):
temp_frame = get_video_frame(facefusion.globals.target_path, facefusion.globals.reference_frame_number)
preview_frame = process_preview_frame(source_face, reference_face, temp_frame)
preview_image_args['value'] = normalize_frame_color(preview_frame)
preview_image_args['visible'] = True
preview_frame_slider_args['value'] = facefusion.globals.reference_frame_number
preview_frame_slider_args['maximum'] = count_video_frame_total(facefusion.globals.target_path)
preview_frame_slider_args['visible'] = True
PREVIEW_IMAGE = gradio.Image(**preview_image_args)
PREVIEW_FRAME_SLIDER = gradio.Slider(**preview_frame_slider_args)
register_ui_component('preview_frame_slider', PREVIEW_FRAME_SLIDER)
def listen() -> None:
PREVIEW_FRAME_SLIDER.change(update_preview_image, inputs = PREVIEW_FRAME_SLIDER, outputs = PREVIEW_IMAGE)
multi_one_component_names : List[ComponentName] =\
[
'source_image',
'target_image',
'target_video'
]
for component_name in multi_one_component_names:
component = get_ui_component(component_name)
if component:
for method in [ 'upload', 'change', 'clear' ]:
getattr(component, method)(update_preview_image, inputs = PREVIEW_FRAME_SLIDER, outputs = PREVIEW_IMAGE)
multi_two_component_names : List[ComponentName] =\
[
'target_image',
'target_video'
]
for component_name in multi_two_component_names:
component = get_ui_component(component_name)
if component:
for method in [ 'upload', 'change', 'clear' ]:
getattr(component, method)(update_preview_frame_slider, outputs = PREVIEW_FRAME_SLIDER)
select_component_names : List[ComponentName] =\
[
'reference_face_position_gallery',
'face_analyser_order_dropdown',
'face_analyser_age_dropdown',
'face_analyser_gender_dropdown'
]
for component_name in select_component_names:
component = get_ui_component(component_name)
if component:
component.select(update_preview_image, inputs = PREVIEW_FRAME_SLIDER, outputs = PREVIEW_IMAGE)
change_one_component_names : List[ComponentName] =\
[
'frame_processors_checkbox_group',
'face_debugger_items_checkbox_group',
'face_enhancer_model_dropdown',
'face_enhancer_blend_slider',
'frame_enhancer_model_dropdown',
'frame_enhancer_blend_slider',
'face_selector_mode_dropdown',
'reference_face_distance_slider',
'face_mask_blur_slider',
'face_mask_padding_top_slider',
'face_mask_padding_bottom_slider',
'face_mask_padding_left_slider',
'face_mask_padding_right_slider'
]
for component_name in change_one_component_names:
component = get_ui_component(component_name)
if component:
component.change(update_preview_image, inputs = PREVIEW_FRAME_SLIDER, outputs = PREVIEW_IMAGE)
change_two_component_names : List[ComponentName] =\
[
'face_swapper_model_dropdown',
'face_detector_model_dropdown',
'face_detector_size_dropdown',
'face_detector_score_slider'
]
for component_name in change_two_component_names:
component = get_ui_component(component_name)
if component:
component.change(clear_and_update_preview_image, inputs = PREVIEW_FRAME_SLIDER, outputs = PREVIEW_IMAGE)
def clear_and_update_preview_image(frame_number : int = 0) -> gradio.Image:
clear_face_analyser()
clear_face_reference()
clear_faces_cache()
return update_preview_image(frame_number)
def update_preview_image(frame_number : int = 0) -> gradio.Image:
conditional_set_face_reference()
source_face = get_one_face(read_static_image(facefusion.globals.source_path))
reference_face = get_face_reference() if 'reference' in facefusion.globals.face_selector_mode else None
if is_image(facefusion.globals.target_path):
target_frame = read_static_image(facefusion.globals.target_path)
preview_frame = process_preview_frame(source_face, reference_face, target_frame)
preview_frame = normalize_frame_color(preview_frame)
return gradio.Image(value = preview_frame)
if is_video(facefusion.globals.target_path):
temp_frame = get_video_frame(facefusion.globals.target_path, frame_number)
preview_frame = process_preview_frame(source_face, reference_face, temp_frame)
preview_frame = normalize_frame_color(preview_frame)
return gradio.Image(value = preview_frame)
return gradio.Image(value = None)
def update_preview_frame_slider() -> gradio.Slider:
if is_video(facefusion.globals.target_path):
video_frame_total = count_video_frame_total(facefusion.globals.target_path)
return gradio.Slider(maximum = video_frame_total, visible = True)
return gradio.Slider(value = None, maximum = None, visible = False)
def process_preview_frame(source_face : Face, reference_face : Face, temp_frame : Frame) -> Frame:
temp_frame = resize_frame_dimension(temp_frame, 640, 640)
if analyse_frame(temp_frame):
return cv2.GaussianBlur(temp_frame, (99, 99), 0)
for frame_processor in facefusion.globals.frame_processors:
frame_processor_module = load_frame_processor_module(frame_processor)
if frame_processor_module.pre_process('preview'):
temp_frame = frame_processor_module.process_frame(
source_face,
reference_face,
temp_frame
)
return temp_frame