Spaces:
Running
Running
from typing import Any, List, Dict, Literal, Optional | |
from argparse import ArgumentParser | |
import threading | |
import cv2 | |
from basicsr.archs.rrdbnet_arch import RRDBNet | |
from realesrgan import RealESRGANer | |
import facefusion.globals | |
import facefusion.processors.frame.core as frame_processors | |
from facefusion import wording | |
from facefusion.face_analyser import clear_face_analyser | |
from facefusion.content_analyser import clear_content_analyser | |
from facefusion.typing import Frame, Face, Update_Process, ProcessMode, ModelValue, OptionsWithModel | |
from facefusion.utilities import conditional_download, resolve_relative_path, is_file, is_download_done, map_device, create_metavar, update_status | |
from facefusion.vision import read_image, read_static_image, write_image | |
from facefusion.processors.frame import globals as frame_processors_globals | |
from facefusion.processors.frame import choices as frame_processors_choices | |
FRAME_PROCESSOR = None | |
THREAD_SEMAPHORE : threading.Semaphore = threading.Semaphore() | |
THREAD_LOCK : threading.Lock = threading.Lock() | |
NAME = 'FACEFUSION.FRAME_PROCESSOR.FRAME_ENHANCER' | |
MODELS: Dict[str, ModelValue] =\ | |
{ | |
'real_esrgan_x2plus': | |
{ | |
'url': 'https://github.com/facefusion/facefusion-assets/releases/download/models/real_esrgan_x2plus.pth', | |
'path': resolve_relative_path('../.assets/models/real_esrgan_x2plus.pth'), | |
'scale': 2 | |
}, | |
'real_esrgan_x4plus': | |
{ | |
'url': 'https://github.com/facefusion/facefusion-assets/releases/download/models/real_esrgan_x4plus.pth', | |
'path': resolve_relative_path('../.assets/models/real_esrgan_x4plus.pth'), | |
'scale': 4 | |
}, | |
'real_esrnet_x4plus': | |
{ | |
'url': 'https://github.com/facefusion/facefusion-assets/releases/download/models/real_esrnet_x4plus.pth', | |
'path': resolve_relative_path('../.assets/models/real_esrnet_x4plus.pth'), | |
'scale': 4 | |
} | |
} | |
OPTIONS : Optional[OptionsWithModel] = None | |
def get_frame_processor() -> Any: | |
global FRAME_PROCESSOR | |
with THREAD_LOCK: | |
if FRAME_PROCESSOR is None: | |
model_path = get_options('model').get('path') | |
model_scale = get_options('model').get('scale') | |
FRAME_PROCESSOR = RealESRGANer( | |
model_path = model_path, | |
model = RRDBNet( | |
num_in_ch = 3, | |
num_out_ch = 3, | |
scale = model_scale | |
), | |
device = map_device(facefusion.globals.execution_providers), | |
scale = model_scale | |
) | |
return FRAME_PROCESSOR | |
def clear_frame_processor() -> None: | |
global FRAME_PROCESSOR | |
FRAME_PROCESSOR = None | |
def get_options(key : Literal['model']) -> Any: | |
global OPTIONS | |
if OPTIONS is None: | |
OPTIONS =\ | |
{ | |
'model': MODELS[frame_processors_globals.frame_enhancer_model] | |
} | |
return OPTIONS.get(key) | |
def set_options(key : Literal['model'], value : Any) -> None: | |
global OPTIONS | |
OPTIONS[key] = value | |
def register_args(program : ArgumentParser) -> None: | |
program.add_argument('--frame-enhancer-model', help = wording.get('frame_processor_model_help'), dest = 'frame_enhancer_model', default = 'real_esrgan_x2plus', choices = frame_processors_choices.frame_enhancer_models) | |
program.add_argument('--frame-enhancer-blend', help = wording.get('frame_processor_blend_help'), dest = 'frame_enhancer_blend', type = int, default = 80, choices = frame_processors_choices.frame_enhancer_blend_range, metavar = create_metavar(frame_processors_choices.frame_enhancer_blend_range)) | |
def apply_args(program : ArgumentParser) -> None: | |
args = program.parse_args() | |
frame_processors_globals.frame_enhancer_model = args.frame_enhancer_model | |
frame_processors_globals.frame_enhancer_blend = args.frame_enhancer_blend | |
def pre_check() -> bool: | |
if not facefusion.globals.skip_download: | |
download_directory_path = resolve_relative_path('../.assets/models') | |
model_url = get_options('model').get('url') | |
conditional_download(download_directory_path, [ model_url ]) | |
return True | |
def pre_process(mode : ProcessMode) -> bool: | |
model_url = get_options('model').get('url') | |
model_path = get_options('model').get('path') | |
if not facefusion.globals.skip_download and not is_download_done(model_url, model_path): | |
update_status(wording.get('model_download_not_done') + wording.get('exclamation_mark'), NAME) | |
return False | |
elif not is_file(model_path): | |
update_status(wording.get('model_file_not_present') + wording.get('exclamation_mark'), NAME) | |
return False | |
if mode == 'output' and not facefusion.globals.output_path: | |
update_status(wording.get('select_file_or_directory_output') + wording.get('exclamation_mark'), NAME) | |
return False | |
return True | |
def post_process() -> None: | |
clear_frame_processor() | |
clear_face_analyser() | |
clear_content_analyser() | |
read_static_image.cache_clear() | |
def enhance_frame(temp_frame : Frame) -> Frame: | |
with THREAD_SEMAPHORE: | |
paste_frame, _ = get_frame_processor().enhance(temp_frame) | |
temp_frame = blend_frame(temp_frame, paste_frame) | |
return temp_frame | |
def blend_frame(temp_frame : Frame, paste_frame : Frame) -> Frame: | |
frame_enhancer_blend = 1 - (frame_processors_globals.frame_enhancer_blend / 100) | |
paste_frame_height, paste_frame_width = paste_frame.shape[0:2] | |
temp_frame = cv2.resize(temp_frame, (paste_frame_width, paste_frame_height)) | |
temp_frame = cv2.addWeighted(temp_frame, frame_enhancer_blend, paste_frame, 1 - frame_enhancer_blend, 0) | |
return temp_frame | |
def process_frame(source_face : Face, reference_face : Face, temp_frame : Frame) -> Frame: | |
return enhance_frame(temp_frame) | |
def process_frames(source_path : str, temp_frame_paths : List[str], update_progress : Update_Process) -> None: | |
for temp_frame_path in temp_frame_paths: | |
temp_frame = read_image(temp_frame_path) | |
result_frame = process_frame(None, None, temp_frame) | |
write_image(temp_frame_path, result_frame) | |
update_progress() | |
def process_image(source_path : str, target_path : str, output_path : str) -> None: | |
target_frame = read_static_image(target_path) | |
result = process_frame(None, None, target_frame) | |
write_image(output_path, result) | |
def process_video(source_path : str, temp_frame_paths : List[str]) -> None: | |
frame_processors.multi_process_frames(None, temp_frame_paths, process_frames) | |