Spaces:
Running
Running
File size: 2,947 Bytes
02c4dcb 355c1f6 02c4dcb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 |
from typing import Any, Dict
from functools import lru_cache
import threading
import cv2
import numpy
import onnxruntime
from tqdm import tqdm
import facefusion.globals
from facefusion import wording
from facefusion.typing import Frame, ModelValue
from facefusion.vision import get_video_frame, count_video_frame_total, read_image, detect_fps
from facefusion.utilities import resolve_relative_path, conditional_download
CONTENT_ANALYSER = None
THREAD_LOCK : threading.Lock = threading.Lock()
MODELS : Dict[str, ModelValue] =\
{
'open_nsfw':
{
'url': 'https://github.com/facefusion/facefusion-assets/releases/download/models/open_nsfw.onnx',
'path': resolve_relative_path('../.assets/models/open_nsfw.onnx')
}
}
MAX_PROBABILITY = 999999.9
MAX_RATE = 5
STREAM_COUNTER = 0
def get_content_analyser() -> Any:
global CONTENT_ANALYSER
with THREAD_LOCK:
if CONTENT_ANALYSER is None:
model_path = MODELS.get('open_nsfw').get('path')
CONTENT_ANALYSER = onnxruntime.InferenceSession(model_path, providers = facefusion.globals.execution_providers)
return CONTENT_ANALYSER
def clear_content_analyser() -> None:
global CONTENT_ANALYSER
CONTENT_ANALYSER = None
def pre_check() -> bool:
if not facefusion.globals.skip_download:
download_directory_path = resolve_relative_path('../.assets/models')
model_url = MODELS.get('open_nsfw').get('url')
conditional_download(download_directory_path, [ model_url ])
return True
def analyse_stream(frame : Frame, fps : float) -> bool:
global STREAM_COUNTER
STREAM_COUNTER = STREAM_COUNTER + 1
if STREAM_COUNTER % int(fps) == 0:
return analyse_frame(frame)
return False
def prepare_frame(frame : Frame) -> Frame:
frame = cv2.resize(frame, (224, 224)).astype(numpy.float32)
frame -= numpy.array([ 104, 117, 123 ]).astype(numpy.float32)
frame = numpy.expand_dims(frame, axis = 0)
return frame
def analyse_frame(frame : Frame) -> bool:
content_analyser = get_content_analyser()
frame = prepare_frame(frame)
probability = content_analyser.run(None,
{
'input:0': frame
})[0][0][1]
return probability > MAX_PROBABILITY
@lru_cache(maxsize = None)
def analyse_image(image_path : str) -> bool:
frame = read_image(image_path)
return analyse_frame(frame)
@lru_cache(maxsize = None)
def analyse_video(video_path : str, start_frame : int, end_frame : int) -> bool:
video_frame_total = count_video_frame_total(video_path)
fps = detect_fps(video_path)
frame_range = range(start_frame or 0, end_frame or video_frame_total)
rate = 0.0
counter = 0
with tqdm(total = len(frame_range), desc = wording.get('analysing'), unit = 'frame', ascii = ' =') as progress:
for frame_number in frame_range:
if frame_number % int(fps) == 0:
frame = get_video_frame(video_path, frame_number)
if analyse_frame(frame):
counter += 1
rate = counter * int(fps) / len(frame_range) * 100
progress.update()
progress.set_postfix(rate = rate)
return rate > MAX_RATE
|