Spaces:
Running
on
Zero
Running
on
Zero
from transformers import Qwen2_5_VLForConditionalGeneration, AutoProcessor | |
from qwen_vl_utils import process_vision_info | |
from prompt import smoke_detection_prompt | |
import gradio as gr | |
import spaces | |
model_name = "leon-se/ForestFireVLM-7B" | |
model = Qwen2_5_VLForConditionalGeneration.from_pretrained( | |
model_name, torch_dtype="auto", device_map="auto" | |
) | |
processor = AutoProcessor.from_pretrained(model_name) | |
def generate(image): | |
messages = [ | |
{ | |
"role": "user", | |
"content": [ | |
{ | |
"type": "image", | |
"image": image, | |
}, | |
{"type": "text", "text": smoke_detection_prompt}, | |
], | |
} | |
] | |
# Preparation for inference | |
text = processor.apply_chat_template( | |
messages, tokenize=False, add_generation_prompt=True | |
) | |
image_inputs, video_inputs = process_vision_info(messages) | |
inputs = processor( | |
text=[text], | |
images=image_inputs, | |
videos=video_inputs, | |
padding=True, | |
return_tensors="pt", | |
) | |
inputs = inputs.to("cuda") | |
# Inference: Generation of the output | |
generated_ids = model.generate(**inputs, max_new_tokens=300, do_sample=False) | |
generated_ids_trimmed = [ | |
out_ids[len(in_ids) :] for in_ids, out_ids in zip(inputs.input_ids, generated_ids) | |
] | |
output_text = processor.batch_decode( | |
generated_ids_trimmed, skip_special_tokens=True, clean_up_tokenization_spaces=False | |
) | |
return output_text[0] | |
inputs = gr.Image(type="pil", label="Input Image") | |
outputs = gr.JSON(label="Output") | |
title = "ForestFireVLM" | |
description = "This is ForestFireVLM-7B, a finetune of Qwen2.5-VL-7B-Instruct. Our demo shows how Vision-Language Models can give detailled and structured captions for forest fires from UAV perspectives." | |
demo = gr.Interface(fn=generate, inputs=inputs, outputs=outputs, deep_link=False, title=title, description=description) | |
demo.launch() | |