ForestFireVLM / app.py
Leon Seidel
Update description
a0317df
from transformers import Qwen2_5_VLForConditionalGeneration, AutoProcessor
from qwen_vl_utils import process_vision_info
from prompt import smoke_detection_prompt
import gradio as gr
import spaces
model_name = "leon-se/ForestFireVLM-7B"
model = Qwen2_5_VLForConditionalGeneration.from_pretrained(
model_name, torch_dtype="auto", device_map="auto"
)
processor = AutoProcessor.from_pretrained(model_name)
@spaces.GPU(duration=120)
def generate(image):
messages = [
{
"role": "user",
"content": [
{
"type": "image",
"image": image,
},
{"type": "text", "text": smoke_detection_prompt},
],
}
]
# Preparation for inference
text = processor.apply_chat_template(
messages, tokenize=False, add_generation_prompt=True
)
image_inputs, video_inputs = process_vision_info(messages)
inputs = processor(
text=[text],
images=image_inputs,
videos=video_inputs,
padding=True,
return_tensors="pt",
)
inputs = inputs.to("cuda")
# Inference: Generation of the output
generated_ids = model.generate(**inputs, max_new_tokens=300, do_sample=False)
generated_ids_trimmed = [
out_ids[len(in_ids) :] for in_ids, out_ids in zip(inputs.input_ids, generated_ids)
]
output_text = processor.batch_decode(
generated_ids_trimmed, skip_special_tokens=True, clean_up_tokenization_spaces=False
)
return output_text[0]
inputs = gr.Image(type="pil", label="Input Image")
outputs = gr.JSON(label="Output")
title = "ForestFireVLM"
description = "This is ForestFireVLM-7B, a finetune of Qwen2.5-VL-7B-Instruct. Our demo shows how Vision-Language Models can give detailled and structured captions for forest fires from UAV perspectives."
demo = gr.Interface(fn=generate, inputs=inputs, outputs=outputs, deep_link=False, title=title, description=description)
demo.launch()