Spaces:
Runtime error
Runtime error
Rename app-yolo.py to app.py
Browse files- app-yolo.py โ app.py +85 -45
app-yolo.py โ app.py
RENAMED
@@ -29,6 +29,15 @@ def load_yolo_model():
|
|
29 |
|
30 |
yolo_model = load_yolo_model()
|
31 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
32 |
# Helper functions
|
33 |
def load_image_from_url(url, max_retries=3):
|
34 |
for attempt in range(max_retries):
|
@@ -42,9 +51,6 @@ def load_image_from_url(url, max_retries=3):
|
|
42 |
time.sleep(1)
|
43 |
else:
|
44 |
return None
|
45 |
-
#Load chromaDB
|
46 |
-
client = chromadb.PersistentClient(path="./clothesDB")
|
47 |
-
collection = client.get_collection(name="clothes_items_ver3")
|
48 |
|
49 |
def get_image_embedding(image):
|
50 |
image_tensor = preprocess_val(image).unsqueeze(0).to(device)
|
@@ -60,32 +66,56 @@ def get_text_embedding(text):
|
|
60 |
text_features /= text_features.norm(dim=-1, keepdim=True)
|
61 |
return text_features.cpu().numpy()
|
62 |
|
63 |
-
def
|
64 |
-
|
65 |
-
return np.array(all_embeddings)
|
66 |
-
|
67 |
-
def get_metadata_from_ids(collection, ids):
|
68 |
-
results = collection.get(ids=ids)
|
69 |
-
return results['metadatas']
|
70 |
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
|
76 |
-
|
|
|
|
|
|
|
|
|
77 |
|
78 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
79 |
|
80 |
-
|
81 |
-
for
|
82 |
-
|
83 |
'info': metadata,
|
84 |
-
'similarity':
|
85 |
})
|
86 |
-
|
87 |
-
|
88 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
89 |
|
90 |
def detect_clothing(image):
|
91 |
results = yolo_model(image)
|
@@ -118,6 +148,12 @@ if 'selected_category' not in st.session_state:
|
|
118 |
# Streamlit app
|
119 |
st.title("Advanced Fashion Search App")
|
120 |
|
|
|
|
|
|
|
|
|
|
|
|
|
121 |
# ๋จ๊ณ๋ณ ์ฒ๋ฆฌ
|
122 |
if st.session_state.step == 'input':
|
123 |
st.session_state.query_image_url = st.text_input("Enter image URL:", st.session_state.query_image_url)
|
@@ -136,7 +172,6 @@ if st.session_state.step == 'input':
|
|
136 |
else:
|
137 |
st.warning("Please enter an image URL.")
|
138 |
|
139 |
-
# Update the 'select_category' step
|
140 |
elif st.session_state.step == 'select_category':
|
141 |
st.image(st.session_state.query_image, caption="Query Image", use_column_width=True)
|
142 |
st.subheader("Detected Clothing Items:")
|
@@ -179,6 +214,13 @@ elif st.session_state.step == 'show_results':
|
|
179 |
st.write(f"Price: {img['info']['price']}")
|
180 |
st.write(f"Discount: {img['info']['discount']}%")
|
181 |
st.write(f"Similarity: {img['similarity']:.2f}")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
182 |
|
183 |
if st.button("Start New Search"):
|
184 |
st.session_state.step = 'input'
|
@@ -186,25 +228,23 @@ elif st.session_state.step == 'show_results':
|
|
186 |
st.session_state.detections = []
|
187 |
st.session_state.selected_category = None
|
188 |
|
189 |
-
|
190 |
-
|
191 |
-
|
192 |
-
|
193 |
-
|
194 |
-
|
195 |
-
|
196 |
-
|
197 |
-
|
198 |
-
|
199 |
-
|
200 |
-
|
201 |
-
|
202 |
-
|
203 |
-
|
204 |
-
|
205 |
-
|
206 |
-
|
207 |
-
|
208 |
-
|
209 |
-
else:
|
210 |
-
st.warning("Please enter a search text.")
|
|
|
29 |
|
30 |
yolo_model = load_yolo_model()
|
31 |
|
32 |
+
# Load ChromaDB
|
33 |
+
@st.cache_resource
|
34 |
+
def load_chromadb():
|
35 |
+
client = chromadb.PersistentClient(path="./chromadb_new")
|
36 |
+
collection = client.get_collection(name="clothes_items_musinsa_ver1")
|
37 |
+
return collection
|
38 |
+
|
39 |
+
collection = load_chromadb()
|
40 |
+
|
41 |
# Helper functions
|
42 |
def load_image_from_url(url, max_retries=3):
|
43 |
for attempt in range(max_retries):
|
|
|
51 |
time.sleep(1)
|
52 |
else:
|
53 |
return None
|
|
|
|
|
|
|
54 |
|
55 |
def get_image_embedding(image):
|
56 |
image_tensor = preprocess_val(image).unsqueeze(0).to(device)
|
|
|
66 |
text_features /= text_features.norm(dim=-1, keepdim=True)
|
67 |
return text_features.cpu().numpy()
|
68 |
|
69 |
+
def get_average_embedding(main_image_url, additional_image_urls):
|
70 |
+
embeddings = []
|
|
|
|
|
|
|
|
|
|
|
71 |
|
72 |
+
# ๋ฉ์ธ ์ด๋ฏธ์ง ์๋ฒ ๋ฉ
|
73 |
+
main_image = load_image_from_url(main_image_url)
|
74 |
+
if main_image:
|
75 |
+
embeddings.append(get_image_embedding(main_image))
|
76 |
|
77 |
+
# ์ถ๊ฐ ์ด๋ฏธ์ง ์๋ฒ ๋ฉ
|
78 |
+
for url in additional_image_urls:
|
79 |
+
img = load_image_from_url(url)
|
80 |
+
if img:
|
81 |
+
embeddings.append(get_image_embedding(img))
|
82 |
|
83 |
+
if embeddings:
|
84 |
+
return np.mean(embeddings, axis=0)
|
85 |
+
else:
|
86 |
+
return None
|
87 |
+
|
88 |
+
def find_similar_images(query_embedding, collection, top_k=5):
|
89 |
+
results = collection.query(
|
90 |
+
query_embeddings=[query_embedding.squeeze().tolist()],
|
91 |
+
n_results=top_k,
|
92 |
+
include=["metadatas", "distances"]
|
93 |
+
)
|
94 |
|
95 |
+
similar_items = []
|
96 |
+
for metadata, distance in zip(results['metadatas'][0], results['distances'][0]):
|
97 |
+
similar_items.append({
|
98 |
'info': metadata,
|
99 |
+
'similarity': 1 - distance # ๊ฑฐ๋ฆฌ๋ฅผ ์ ์ฌ๋๋ก ๋ณํ
|
100 |
})
|
101 |
+
|
102 |
+
return similar_items
|
103 |
|
104 |
+
def update_collection_embeddings():
|
105 |
+
all_ids = collection.get(include=['metadatas'])['ids']
|
106 |
+
all_metadata = collection.get(include=['metadatas'])['metadatas']
|
107 |
+
|
108 |
+
for id, metadata in zip(all_ids, all_metadata):
|
109 |
+
main_image_url = metadata['image_url']
|
110 |
+
additional_image_urls = metadata.get('additional_images', [])
|
111 |
+
|
112 |
+
avg_embedding = get_average_embedding(main_image_url, additional_image_urls)
|
113 |
+
|
114 |
+
if avg_embedding is not None:
|
115 |
+
collection.update(
|
116 |
+
ids=[id],
|
117 |
+
embeddings=[avg_embedding.tolist()]
|
118 |
+
)
|
119 |
|
120 |
def detect_clothing(image):
|
121 |
results = yolo_model(image)
|
|
|
148 |
# Streamlit app
|
149 |
st.title("Advanced Fashion Search App")
|
150 |
|
151 |
+
# ์ปฌ๋ ์
์๋ฒ ๋ฉ ์
๋ฐ์ดํธ (์ฒซ ์คํ ์ ํ ๋ฒ๋ง)
|
152 |
+
if 'embeddings_updated' not in st.session_state:
|
153 |
+
with st.spinner("Updating collection embeddings... This may take a while."):
|
154 |
+
update_collection_embeddings()
|
155 |
+
st.session_state.embeddings_updated = True
|
156 |
+
|
157 |
# ๋จ๊ณ๋ณ ์ฒ๋ฆฌ
|
158 |
if st.session_state.step == 'input':
|
159 |
st.session_state.query_image_url = st.text_input("Enter image URL:", st.session_state.query_image_url)
|
|
|
172 |
else:
|
173 |
st.warning("Please enter an image URL.")
|
174 |
|
|
|
175 |
elif st.session_state.step == 'select_category':
|
176 |
st.image(st.session_state.query_image, caption="Query Image", use_column_width=True)
|
177 |
st.subheader("Detected Clothing Items:")
|
|
|
214 |
st.write(f"Price: {img['info']['price']}")
|
215 |
st.write(f"Discount: {img['info']['discount']}%")
|
216 |
st.write(f"Similarity: {img['similarity']:.2f}")
|
217 |
+
|
218 |
+
# ์ถ๊ฐ ์ด๋ฏธ์ง ํ์
|
219 |
+
additional_images = img['info'].get('additional_images', [])
|
220 |
+
if additional_images:
|
221 |
+
st.write("Additional Images:")
|
222 |
+
for add_img_url in additional_images[:3]: # ์ต๋ 3๊ฐ๊น์ง๋ง ํ์
|
223 |
+
st.image(add_img_url, width=100)
|
224 |
|
225 |
if st.button("Start New Search"):
|
226 |
st.session_state.step = 'input'
|
|
|
228 |
st.session_state.detections = []
|
229 |
st.session_state.selected_category = None
|
230 |
|
231 |
+
# Text search
|
232 |
+
st.sidebar.title("Text Search")
|
233 |
+
query_text = st.sidebar.text_input("Enter search text:")
|
234 |
+
if st.sidebar.button("Search by Text"):
|
235 |
+
if query_text:
|
236 |
+
text_embedding = get_text_embedding(query_text)
|
237 |
+
similar_images = find_similar_images(text_embedding, collection)
|
238 |
+
st.sidebar.subheader("Similar Items:")
|
239 |
+
for img in similar_images:
|
240 |
+
st.sidebar.image(img['info']['image_url'], use_column_width=True)
|
241 |
+
st.sidebar.write(f"Name: {img['info']['name']}")
|
242 |
+
st.sidebar.write(f"Brand: {img['info']['brand']}")
|
243 |
+
category = img['info'].get('category')
|
244 |
+
if category:
|
245 |
+
st.sidebar.write(f"Category: {category}")
|
246 |
+
st.sidebar.write(f"Price: {img['info']['price']}")
|
247 |
+
st.sidebar.write(f"Discount: {img['info']['discount']}%")
|
248 |
+
st.sidebar.write(f"Similarity: {img['similarity']:.2f}")
|
249 |
+
else:
|
250 |
+
st.sidebar.warning("Please enter a search text.")
|
|
|
|