File size: 9,883 Bytes
543b03f
 
 
 
 
 
 
 
 
 
 
054c8f7
 
 
 
 
 
 
543b03f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
97480db
543b03f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7cd611a
543b03f
 
 
 
 
 
 
 
 
 
e068263
 
 
 
 
 
 
 
 
 
 
 
 
054c8f7
 
 
 
 
e068263
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b757e27
 
 
 
 
 
 
 
 
 
543b03f
 
 
b757e27
 
 
543b03f
b757e27
 
543b03f
b757e27
 
 
 
543b03f
 
 
 
 
 
e068263
543b03f
b757e27
 
 
e068263
 
 
 
 
b757e27
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ce67f34
543b03f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
import streamlit as st
import open_clip
import torch
import requests
from PIL import Image
from io import BytesIO
import time
import json
import numpy as np
from ultralytics import YOLO
import cv2

try:
    from streamlit_img_label import st_img_label
    from streamlit_img_label.manage import ImageManager
except ImportError:
    st.error("Required modules are not installed. Please install 'streamlit-img-label' and 'pascal-voc-writer'.")
    st.stop()

# Load CLIP model and tokenizer
@st.cache_resource
def load_clip_model():
    model, preprocess_train, preprocess_val = open_clip.create_model_and_transforms('hf-hub:Marqo/marqo-fashionSigLIP')
    tokenizer = open_clip.get_tokenizer('hf-hub:Marqo/marqo-fashionSigLIP')
    device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
    model.to(device)
    return model, preprocess_val, tokenizer, device

clip_model, preprocess_val, tokenizer, device = load_clip_model()

# Load YOLOv8 model
@st.cache_resource
def load_yolo_model():
    return YOLO("./best.pt")

yolo_model = load_yolo_model()

# Load and process data
@st.cache_data
def load_data():
    with open('./musinsa-final.json', 'r', encoding='utf-8') as f:
        return json.load(f)

data = load_data()

# Helper functions
def load_image_from_url(url, max_retries=3):
    for attempt in range(max_retries):
        try:
            response = requests.get(url, timeout=10)
            response.raise_for_status()
            img = Image.open(BytesIO(response.content)).convert('RGB')
            return img
        except (requests.RequestException, Image.UnidentifiedImageError) as e:
            if attempt < max_retries - 1:
                time.sleep(1)
            else:
                return None

def get_image_embedding(image):
    image_tensor = preprocess_val(image).unsqueeze(0).to(device)
    with torch.no_grad():
        image_features = clip_model.encode_image(image_tensor)
        image_features /= image_features.norm(dim=-1, keepdim=True)
    return image_features.cpu().numpy()

@st.cache_data
def process_database():
    database_embeddings = []
    database_info = []

    for item in data:
        image_url = item['์ด๋ฏธ์ง€ ๋งํฌ'][0]
        image = load_image_from_url(image_url)
        if image is not None:
            embedding = get_image_embedding(image)
            database_embeddings.append(embedding)
            database_info.append({
                'id': item['\ufeff์ƒํ’ˆ ID'],
                'category': item['์นดํ…Œ๊ณ ๋ฆฌ'],
                'brand': item['๋ธŒ๋žœ๋“œ๋ช…'],
                'name': item['์ œํ’ˆ๋ช…'],
                'price': item['์ •๊ฐ€'],
                'discount': item['ํ• ์ธ์œจ'],
                'image_url': image_url
            })
        else:
            st.warning(f"Skipping item {item['๏ปฟ์ƒํ’ˆ ID']} due to image loading failure")

    if database_embeddings:
        return np.vstack(database_embeddings), database_info
    else:
        st.error("No valid embeddings were generated.")
        return None, None

database_embeddings, database_info = process_database()

def get_text_embedding(text):
    text_tokens = tokenizer([text]).to(device)
    with torch.no_grad():
        text_features = clip_model.encode_text(text_tokens)
        text_features /= text_features.norm(dim=-1, keepdim=True)
    return text_features.cpu().numpy()

def find_similar_images(query_embedding, top_k=5):
    similarities = np.dot(database_embeddings, query_embedding.T).squeeze()
    top_indices = np.argsort(similarities)[::-1][:top_k]
    results = []
    for idx in top_indices:
        results.append({
            'info': database_info[idx],
            'similarity': similarities[idx]
        })
    return results

def detect_clothing(image):
    results = yolo_model(image)
    detections = results[0].boxes.data.cpu().numpy()
    categories = []
    for detection in detections:
        x1, y1, x2, y2, conf, cls = detection
        category = yolo_model.names[int(cls)]
        if category in ['sunglass','hat','jacket','shirt','pants','shorts','skirt','dress','bag','shoe']:
            categories.append({
                'category': category,
                'bbox': [int(x1), int(y1), int(x2), int(y2)],
                'confidence': conf
            })
    return categories

def crop_image(image, bbox):
    return image.crop((bbox[0], bbox[1], bbox[2], bbox[3]))

def adjust_bounding_boxes(image, detections):
    img_height, img_width = image.size
    rects = []
    for detection in detections:
        x1, y1, x2, y2 = detection['bbox']
        rects.append({
            "left": x1 / img_width,
            "top": y1 / img_height,
            "width": (x2 - x1) / img_width,
            "height": (y2 - y1) / img_height,
            "label": detection['category']
        })
    
    try:
        adjusted_rects = st_img_label(image, box_color="red", rects=rects)
    except Exception as e:
        st.error(f"Error in st_img_label: {str(e)}")
        return detections
    
    adjusted_detections = []
    for rect, detection in zip(adjusted_rects, detections):
        x1 = rect["left"] * img_width
        y1 = rect["top"] * img_height
        x2 = x1 + (rect["width"] * img_width)
        y2 = y1 + (rect["height"] * img_height)
        adjusted_detections.append({
            'category': rect["label"],
            'bbox': [int(x1), int(y1), int(x2), int(y2)],
            'confidence': detection['confidence']
        })
    
    return adjusted_detections

# ์„ธ์…˜ ์ƒํƒœ ์ดˆ๊ธฐํ™”
if 'step' not in st.session_state:
    st.session_state.step = 'input'
if 'query_image_url' not in st.session_state:
    st.session_state.query_image_url = ''
if 'detections' not in st.session_state:
    st.session_state.detections = []
if 'selected_category' not in st.session_state:
    st.session_state.selected_category = None

# Streamlit app
st.title("Advanced Fashion Search App")

# ๋‹จ๊ณ„๋ณ„ ์ฒ˜๋ฆฌ
if st.session_state.step == 'input':
    st.session_state.query_image_url = st.text_input("Enter image URL:", st.session_state.query_image_url)
    if st.button("Detect Clothing"):
        if st.session_state.query_image_url:
            query_image = load_image_from_url(st.session_state.query_image_url)
            if query_image is not None:
                st.session_state.query_image = query_image
                st.session_state.detections = detect_clothing(query_image)
                if st.session_state.detections:
                    st.session_state.step = 'select_category'
                else:
                    st.warning("No clothing items detected in the image.")
            else:
                st.error("Failed to load the image. Please try another URL.")
        else:
            st.warning("Please enter an image URL.")
    pass

elif st.session_state.step == 'select_category':
    st.image(st.session_state.query_image, caption="Query Image", use_column_width=True)
    st.subheader("Detected Clothing Items:")
    
    # ๊ฒฝ๊ณ„ ์ƒ์ž ์กฐ์ • ๊ธฐ๋Šฅ ์ถ”๊ฐ€
    adjusted_detections = adjust_bounding_boxes(st.session_state.query_image, st.session_state.detections)
    st.session_state.detections = adjusted_detections
    
    options = [f"{d['category']} (Confidence: {d['confidence']:.2f})" for d in st.session_state.detections]
    selected_option = st.selectbox("Select a category to search:", options)
    if st.button("Search Similar Items"):
        st.session_state.selected_category = selected_option
        st.session_state.step = 'show_results'

elif st.session_state.step == 'show_results':
    st.image(st.session_state.query_image, caption="Query Image", use_column_width=True)
    selected_detection = next(d for d in st.session_state.detections 
                              if f"{d['category']} (Confidence: {d['confidence']:.2f})" == st.session_state.selected_category)
    cropped_image = crop_image(st.session_state.query_image, selected_detection['bbox'])
    st.image(cropped_image, caption="Cropped Image", use_column_width=True)
    query_embedding = get_image_embedding(cropped_image)
    similar_images = find_similar_images(query_embedding)
    
    st.subheader("Similar Items:")
    for img in similar_images:
        col1, col2 = st.columns(2)
        with col1:
            st.image(img['info']['image_url'], use_column_width=True)
        with col2:
            st.write(f"Name: {img['info']['name']}")
            st.write(f"Brand: {img['info']['brand']}")
            st.write(f"Category: {img['info']['category']}")
            st.write(f"Price: {img['info']['price']}")
            st.write(f"Discount: {img['info']['discount']}%")
            st.write(f"Similarity: {img['similarity']:.2f}")
    
    if st.button("Start New Search"):
        st.session_state.step = 'input'
        st.session_state.query_image_url = ''
        st.session_state.detections = []
        st.session_state.selected_category = None

else:  # Text search
    query_text = st.text_input("Enter search text:")
    if st.button("Search by Text"):
        if query_text:
            text_embedding = get_text_embedding(query_text)
            similar_images = find_similar_images(text_embedding)
            st.subheader("Similar Items:")
            for img in similar_images:
                col1, col2 = st.columns(2)
                with col1:
                    st.image(img['info']['image_url'], use_column_width=True)
                with col2:
                    st.write(f"Name: {img['info']['name']}")
                    st.write(f"Brand: {img['info']['brand']}")
                    st.write(f"Category: {img['info']['category']}")
                    st.write(f"Price: {img['info']['price']}")
                    st.write(f"Discount: {img['info']['discount']}%")
                    st.write(f"Similarity: {img['similarity']:.2f}")
        else:
            st.warning("Please enter a search text.")