TwitterEmojis / app.py
akshay7's picture
FIX: Emoji color
cdb37fd
import streamlit as st
from transformers import AutoTokenizer, AutoModelForSequenceClassification
import numpy as np
import torch
TOP_N = 5
def main():
st.set_page_config( # Alternate names: setup_page, page, layout
layout="centered", # Can be "centered" or "wide". In the future also "dashboard", etc.
initial_sidebar_state="auto", # Can be "auto", "expanded", "collapsed"
page_title="Emoji-motion!", # String or None. Strings get appended with "• Streamlit".
page_icon=None, # String, anything supported by st.image, or None.
)
st.title('Emoji-motion!')
example_prompts = [
"it's pretty depressing when u hit pan on ur favourite highlighter",
"After what just happened. In need to smoke.",
"I've never been happier. I'm laying awake as I watch @user sleep. Thanks for making me happy again, babe.",
"@user is the man",
"Поприветствуем моего нового читателя @user",
"сегодня у одной крутой бичи день рождения! @user поздравляю тебя с днем рождения! будь самой-самой счастливой,красота:* море любви тебе",
"Никогда не явствовала себя ужаснее, чем сейчас:( я просто раздавленна",
"Самое ужасное - это ожидание результатов",
"печально что заряд одинаково фигово держится(",
]
example = st.selectbox("Choose an example", example_prompts)
# Take the message which needs to be processed
message = st.text_area("...or paste some text to see the model's predictions", example)
# st.title(message)
st.text('')
models_to_choose = [
"amazon-sagemaker-community/xlm-roberta-en-ru-emoji-v2",
"AlekseyDorkin/xlm-roberta-en-ru-emoji"
]
BASE_MODEL = st.selectbox("Choose a model", models_to_choose)
TOP_N = 5
def preprocess(text):
new_text = []
for t in text.split(" "):
t = '@user' if t.startswith('@') and len(t) > 1 else t
t = 'http' if t.startswith('http') else t
new_text.append(t)
return " ".join(new_text)
@st.cache(allow_output_mutation=True, suppress_st_warning=True, show_spinner=True)
def load_model():
tokenizer = AutoTokenizer.from_pretrained(BASE_MODEL)
model = AutoModelForSequenceClassification.from_pretrained(BASE_MODEL)
return model, tokenizer
def get_top_emojis(text, top_n=TOP_N):
model, tokenizer = load_model()
preprocessed = preprocess(text)
inputs = tokenizer(preprocessed, return_tensors="pt")
preds = model(**inputs).logits
scores = torch.nn.functional.softmax(preds, dim=-1).detach().numpy()
ranking = np.argsort(scores)
ranking = ranking.squeeze()[::-1][:top_n]
emojis = [model.config.id2label[i] for i in ranking]
return ', '.join(map(str, emojis))
# Define function to run when submit is clicked
def submit(message):
if len(message) > 0:
emoji = get_top_emojis(message)
html_str = f"""
<style>
p.a {{
font: 26px Courier;
}}
</style>
<p class="a">{emoji}</p>
"""
st.markdown(html_str, unsafe_allow_html=True)
# st.markdown(emoji)
else:
st.error("The text can't be empty")
# Run algo when submit button is clicked
if st.button('Submit'):
submit(message)
st.text('')
st.markdown(
'''<span style="color:blue; font-size:10px">App created by [@AlekseyDorkin](https://huggingface.co/AlekseyDorkin)
and [@akshay7](https://huggingface.co/akshay7)</span>''',
unsafe_allow_html=True,
)
if __name__ == "__main__":
main()