Spaces:
Running
Running
leandroaraujodev
commited on
Commit
·
550c464
1
Parent(s):
a168116
integracao gabriel
Browse files
app.py
CHANGED
@@ -25,42 +25,28 @@ from typing import List, Optional
|
|
25 |
from llama_index.core import PromptTemplate
|
26 |
import torch
|
27 |
from llama_index.embeddings.huggingface import HuggingFaceEmbedding
|
28 |
-
|
29 |
|
30 |
import logging
|
31 |
import sys
|
32 |
from PIL import Image
|
33 |
-
import gc
|
34 |
-
|
35 |
-
def flush():
|
36 |
-
gc.collect()
|
37 |
-
torch.cuda.empty_cache()
|
38 |
-
torch.cuda.reset_peak_memory_stats()
|
39 |
|
40 |
-
#Token do huggingface
|
41 |
-
HF_TOKEN: Optional[str] = os.getenv("HF_TOKEN")
|
42 |
-
huggingface_hub.login(HF_TOKEN)
|
43 |
#Configuração da imagem da aba
|
44 |
|
45 |
-
im = Image.open("
|
46 |
st.set_page_config(page_title = "Chatbot Carômetro", page_icon=im, layout = "wide")
|
47 |
|
48 |
-
#
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
print(f"Pasta '{pasta}' criada com sucesso.")
|
56 |
-
else:
|
57 |
-
print(f"Pasta '{pasta}' já existe.")
|
58 |
-
|
59 |
-
|
60 |
|
61 |
# Configuração do Streamlit
|
62 |
st.sidebar.title("Configuração de LLM")
|
63 |
-
sidebar_option = st.sidebar.radio("Selecione o LLM", ["
|
64 |
# logo_url = 'app\logos\logo-sicoob.jpg'
|
65 |
# st.sidebar.image(logo_url)
|
66 |
import base64
|
@@ -82,22 +68,16 @@ with open("sicoob-logo.png", "rb") as f:
|
|
82 |
#if sidebar_option == "Ollama":
|
83 |
# Settings.llm = Ollama(model="llama3.2:latest", request_timeout=500.0, num_gpu=1)
|
84 |
# Settings.embed_model = OllamaEmbedding(model_name="nomic-embed-text:latest")
|
85 |
-
if sidebar_option == "gpt-3.5":
|
86 |
from llama_index.llms.openai import OpenAI
|
87 |
from llama_index.embeddings.openai import OpenAIEmbedding
|
88 |
-
os.environ["OPENAI_API_KEY"] = "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"
|
89 |
Settings.llm = OpenAI(model="gpt-3.5-turbo")
|
90 |
Settings.embed_model = OpenAIEmbedding(model_name="text-embedding-ada-002")
|
91 |
-
elif sidebar_option == '
|
92 |
|
93 |
logging.basicConfig(stream=sys.stdout, level=logging.INFO)
|
94 |
logging.getLogger().addHandler(logging.StreamHandler(stream=sys.stdout))
|
95 |
|
96 |
-
#query_wrapper_prompt = PromptTemplate(
|
97 |
-
#"Below are several documents about a company "
|
98 |
-
#"Write a response that appropriately completes the request.\n\n"
|
99 |
-
#"### Instruction:\n{query_str}\n\n### Response:"
|
100 |
-
#)
|
101 |
#Embedding do huggingface
|
102 |
Settings.embed_model = HuggingFaceEmbedding(
|
103 |
model_name="BAAI/bge-small-en-v1.5"
|
@@ -139,6 +119,7 @@ elif sidebar_option == 'HF Local':
|
|
139 |
|
140 |
tokenizer.apply_chat_template(chat, tokenize=False)
|
141 |
|
|
|
142 |
Settings.chunk_size = 512
|
143 |
Settings.llm = llm
|
144 |
|
@@ -149,7 +130,10 @@ else:
|
|
149 |
chat_store_path = os.path.join("chat_store", "chat_store.json")
|
150 |
documents_path = os.path.join("documentos")
|
151 |
chroma_storage_path = os.path.join("chroma_db") # Diretório para persistência do Chroma
|
|
|
152 |
bm25_persist_path = os.path.join("bm25_retriever")
|
|
|
|
|
153 |
|
154 |
# Configuração de leitura de documentos
|
155 |
documents = SimpleDirectoryReader(input_dir=documents_path).load_data()
|
@@ -191,10 +175,39 @@ else:
|
|
191 |
os.makedirs(bm25_persist_path, exist_ok=True)
|
192 |
bm25_retriever.persist(bm25_persist_path)
|
193 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
194 |
# Combinação de Retrievers (Embeddings + BM25)
|
195 |
vector_retriever = index.as_retriever(similarity_top_k=2)
|
196 |
retriever = QueryFusionRetriever(
|
197 |
-
[vector_retriever, bm25_retriever],
|
198 |
similarity_top_k=2,
|
199 |
num_queries=4,
|
200 |
mode="reciprocal_rerank",
|
@@ -248,4 +261,4 @@ if user_input:
|
|
248 |
for message in st.session_state.chat_history:
|
249 |
role, text = message.split(":", 1)
|
250 |
with st.chat_message(role.strip().lower()):
|
251 |
-
st.write(text.strip())
|
|
|
25 |
from llama_index.core import PromptTemplate
|
26 |
import torch
|
27 |
from llama_index.embeddings.huggingface import HuggingFaceEmbedding
|
28 |
+
|
29 |
|
30 |
import logging
|
31 |
import sys
|
32 |
from PIL import Image
|
|
|
|
|
|
|
|
|
|
|
|
|
33 |
|
|
|
|
|
|
|
34 |
#Configuração da imagem da aba
|
35 |
|
36 |
+
im = Image.open("pngegg.png")
|
37 |
st.set_page_config(page_title = "Chatbot Carômetro", page_icon=im, layout = "wide")
|
38 |
|
39 |
+
#Removido loop e adicionado os.makedirs
|
40 |
+
os.makedirs("bm25_retriever", exist_ok=True)
|
41 |
+
os.makedirs("chat_store", exist_ok=True)
|
42 |
+
os.makedirs("chroma_db", exist_ok=True)
|
43 |
+
os.makedirs("documentos", exist_ok=True)
|
44 |
+
os.makedirs("curadoria", exist_ok=True)
|
45 |
+
os.makedirs("chroma_db_curadoria", exist_ok=True)
|
|
|
|
|
|
|
|
|
|
|
46 |
|
47 |
# Configuração do Streamlit
|
48 |
st.sidebar.title("Configuração de LLM")
|
49 |
+
sidebar_option = st.sidebar.radio("Selecione o LLM", ["gpt-3.5-turbo", "NuExtract-1.5"])
|
50 |
# logo_url = 'app\logos\logo-sicoob.jpg'
|
51 |
# st.sidebar.image(logo_url)
|
52 |
import base64
|
|
|
68 |
#if sidebar_option == "Ollama":
|
69 |
# Settings.llm = Ollama(model="llama3.2:latest", request_timeout=500.0, num_gpu=1)
|
70 |
# Settings.embed_model = OllamaEmbedding(model_name="nomic-embed-text:latest")
|
71 |
+
if sidebar_option == "gpt-3.5-turbo":
|
72 |
from llama_index.llms.openai import OpenAI
|
73 |
from llama_index.embeddings.openai import OpenAIEmbedding
|
|
|
74 |
Settings.llm = OpenAI(model="gpt-3.5-turbo")
|
75 |
Settings.embed_model = OpenAIEmbedding(model_name="text-embedding-ada-002")
|
76 |
+
elif sidebar_option == 'NuExtract-1.5':
|
77 |
|
78 |
logging.basicConfig(stream=sys.stdout, level=logging.INFO)
|
79 |
logging.getLogger().addHandler(logging.StreamHandler(stream=sys.stdout))
|
80 |
|
|
|
|
|
|
|
|
|
|
|
81 |
#Embedding do huggingface
|
82 |
Settings.embed_model = HuggingFaceEmbedding(
|
83 |
model_name="BAAI/bge-small-en-v1.5"
|
|
|
119 |
|
120 |
tokenizer.apply_chat_template(chat, tokenize=False)
|
121 |
|
122 |
+
|
123 |
Settings.chunk_size = 512
|
124 |
Settings.llm = llm
|
125 |
|
|
|
130 |
chat_store_path = os.path.join("chat_store", "chat_store.json")
|
131 |
documents_path = os.path.join("documentos")
|
132 |
chroma_storage_path = os.path.join("chroma_db") # Diretório para persistência do Chroma
|
133 |
+
chroma_storage_path_curadoria = os.path.join("chroma_db_curadoria") # Diretório para 'curadoria'
|
134 |
bm25_persist_path = os.path.join("bm25_retriever")
|
135 |
+
curadoria_path = os.path.join("curadoria")
|
136 |
+
|
137 |
|
138 |
# Configuração de leitura de documentos
|
139 |
documents = SimpleDirectoryReader(input_dir=documents_path).load_data()
|
|
|
175 |
os.makedirs(bm25_persist_path, exist_ok=True)
|
176 |
bm25_retriever.persist(bm25_persist_path)
|
177 |
|
178 |
+
#Adicionado documentos na pasta curadoria, foi setado para 1200 o chunk pra receber pergunta, contexto e resposta
|
179 |
+
curadoria_documents = SimpleDirectoryReader(input_dir=curadoria_path).load_data()
|
180 |
+
|
181 |
+
curadoria_docstore = SimpleDocumentStore()
|
182 |
+
curadoria_docstore.add_documents(curadoria_documents)
|
183 |
+
|
184 |
+
db_curadoria = chromadb.PersistentClient(path=chroma_storage_path_curadoria)
|
185 |
+
chroma_collection_curadoria = db_curadoria.get_or_create_collection("dense_vectors_curadoria")
|
186 |
+
vector_store_curadoria = ChromaVectorStore(chroma_collection=chroma_collection_curadoria)
|
187 |
+
|
188 |
+
# Configuração do StorageContext para 'curadoria'
|
189 |
+
storage_context_curadoria = StorageContext.from_defaults(
|
190 |
+
docstore=curadoria_docstore, vector_store=vector_store_curadoria
|
191 |
+
)
|
192 |
+
|
193 |
+
# Criação/Recarregamento do índice com embeddings para 'curadoria'
|
194 |
+
if os.path.exists(chroma_storage_path_curadoria):
|
195 |
+
curadoria_index = VectorStoreIndex.from_vector_store(vector_store_curadoria)
|
196 |
+
else:
|
197 |
+
curadoria_splitter = LangchainNodeParser(
|
198 |
+
RecursiveCharacterTextSplitter(chunk_size=1200, chunk_overlap=100)
|
199 |
+
)
|
200 |
+
curadoria_index = VectorStoreIndex.from_documents(
|
201 |
+
curadoria_documents, storage_context=storage_context_curadoria, transformations=[curadoria_splitter]
|
202 |
+
)
|
203 |
+
vector_store_curadoria.persist()
|
204 |
+
|
205 |
+
curadoria_retriever = curadoria_index.as_retriever(similarity_top_k=2)
|
206 |
+
|
207 |
# Combinação de Retrievers (Embeddings + BM25)
|
208 |
vector_retriever = index.as_retriever(similarity_top_k=2)
|
209 |
retriever = QueryFusionRetriever(
|
210 |
+
[vector_retriever, bm25_retriever, curadoria_retriever],
|
211 |
similarity_top_k=2,
|
212 |
num_queries=4,
|
213 |
mode="reciprocal_rerank",
|
|
|
261 |
for message in st.session_state.chat_history:
|
262 |
role, text = message.split(":", 1)
|
263 |
with st.chat_message(role.strip().lower()):
|
264 |
+
st.write(text.strip())
|