leakyrelu commited on
Commit
778c295
·
1 Parent(s): 471c843

add initial test

Browse files
Files changed (3) hide show
  1. app.py +64 -3
  2. detection.tflite +3 -0
  3. recognition.tflite +3 -0
app.py CHANGED
@@ -1,8 +1,69 @@
1
  import gradio as gr
 
2
 
 
 
 
 
 
 
 
 
3
 
4
- def greet(name):
5
- return "Hello " + name + "!!"
6
 
7
- iface = gr.Interface(fn=greet, inputs="text", outputs="text")
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8
  iface.launch()
 
1
  import gradio as gr
2
+ import re, datetime,time, cv2, numpy as np, tensorflow as tf, sys
3
 
4
+ interpreter = tf.lite.Interpreter(model_path='detection.tflite')
5
+ interpreter.allocate_tensors()
6
+ recog_interpreter = tf.lite.Interpreter(model_path='recognition.tflite')
7
+ recog_interpreter.allocate_tensors()
8
+ input_details = interpreter.get_input_details()
9
+ output_details = interpreter.get_output_details()
10
+ recog_input_details = recog_interpreter.get_input_details()
11
+ recog_output_details = recog_interpreter.get_output_details()
12
 
 
 
13
 
14
+
15
+ def execute_text_recognition_tflite( boxes, frame, interpreter, input_details, output_details):
16
+ x1, x2, y1, y2 = boxes[1], boxes[3], boxes[0], boxes[2]
17
+ save_frame = frame[
18
+ max( 0, int(y1*1079) ) : min( 1079, int(y2*1079) ),
19
+ max( 0, int(x1*1920) ) : min( 1920, int(x2*1920) )
20
+ ]
21
+
22
+ # Execute text recognition
23
+
24
+ test_image = cv2.resize(save_frame,(94,24))/256
25
+ test_image = np.expand_dims(test_image,axis=0)
26
+ test_image = test_image.astype(np.float32)
27
+ interpreter.set_tensor(input_details[0]['index'], test_image)
28
+ interpreter.invoke()
29
+ output_data = interpreter.get_tensor(output_details[0]['index'])
30
+ decoded = tf.keras.backend.ctc_decode(output_data,(24,),greedy=False)
31
+ text = ""
32
+ for i in np.array(decoded[0][0][0]):
33
+ if i >-1:
34
+ text += DECODE_DICT[i]
35
+ # Do nothing if text is empty
36
+ if not len(text): return
37
+ license_plate = text
38
+ text[:3].replace("0",'O')
39
+
40
+ return text
41
+
42
+ def greet(image):
43
+ resized = cv2.resize(image, (320,320), interpolation=cv2.INTER_AREA)
44
+ demo_frame = cv2.resize(image, (680,480), interpolation=cv2.INTER_AREA)
45
+ input_data = resized.astype(np.float32) # Set as 3D RGB float array
46
+ input_data /= 255. # Normalize
47
+ input_data = np.expand_dims(input_data, axis=0) # Batch dimension (wrap in 4D)
48
+
49
+ # Initialize input tensor
50
+ interpreter.set_tensor(input_details[0]['index'], input_data)
51
+ interpreter.invoke()
52
+ output_data = interpreter.get_tensor(output_details[0]['index'])
53
+
54
+ # Bounding boxes
55
+ boxes = interpreter.get_tensor(output_details[1]['index'])
56
+
57
+ text = None
58
+ # For index and confidence value of the first class [0]
59
+ for i, confidence in enumerate(output_data[0]):
60
+ if confidence > .3:
61
+ text = execute_text_recognition_tflite(
62
+ boxes[0][i], image,
63
+ recog_interpreter, recog_input_details, recog_output_details,
64
+ )
65
+ return text
66
+ image = gr.inputs.Image(shape=(320,320))
67
+
68
+ iface = gr.Interface(fn=greet, inputs=image, outputs="text")
69
  iface.launch()
detection.tflite ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9a985cc86131fac5be60478f4c10be416dfe035445b70813d6441ced7d330018
3
+ size 11495036
recognition.tflite ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b080d01c1c84eaa207c8ca5834070bd76ce8d62fe6a4dce7c31d238462a07796
3
+ size 820132