Spaces:
Runtime error
Runtime error
add initial test
Browse files- app.py +64 -3
- detection.tflite +3 -0
- recognition.tflite +3 -0
app.py
CHANGED
@@ -1,8 +1,69 @@
|
|
1 |
import gradio as gr
|
|
|
2 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
3 |
|
4 |
-
def greet(name):
|
5 |
-
return "Hello " + name + "!!"
|
6 |
|
7 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
8 |
iface.launch()
|
|
|
1 |
import gradio as gr
|
2 |
+
import re, datetime,time, cv2, numpy as np, tensorflow as tf, sys
|
3 |
|
4 |
+
interpreter = tf.lite.Interpreter(model_path='detection.tflite')
|
5 |
+
interpreter.allocate_tensors()
|
6 |
+
recog_interpreter = tf.lite.Interpreter(model_path='recognition.tflite')
|
7 |
+
recog_interpreter.allocate_tensors()
|
8 |
+
input_details = interpreter.get_input_details()
|
9 |
+
output_details = interpreter.get_output_details()
|
10 |
+
recog_input_details = recog_interpreter.get_input_details()
|
11 |
+
recog_output_details = recog_interpreter.get_output_details()
|
12 |
|
|
|
|
|
13 |
|
14 |
+
|
15 |
+
def execute_text_recognition_tflite( boxes, frame, interpreter, input_details, output_details):
|
16 |
+
x1, x2, y1, y2 = boxes[1], boxes[3], boxes[0], boxes[2]
|
17 |
+
save_frame = frame[
|
18 |
+
max( 0, int(y1*1079) ) : min( 1079, int(y2*1079) ),
|
19 |
+
max( 0, int(x1*1920) ) : min( 1920, int(x2*1920) )
|
20 |
+
]
|
21 |
+
|
22 |
+
# Execute text recognition
|
23 |
+
|
24 |
+
test_image = cv2.resize(save_frame,(94,24))/256
|
25 |
+
test_image = np.expand_dims(test_image,axis=0)
|
26 |
+
test_image = test_image.astype(np.float32)
|
27 |
+
interpreter.set_tensor(input_details[0]['index'], test_image)
|
28 |
+
interpreter.invoke()
|
29 |
+
output_data = interpreter.get_tensor(output_details[0]['index'])
|
30 |
+
decoded = tf.keras.backend.ctc_decode(output_data,(24,),greedy=False)
|
31 |
+
text = ""
|
32 |
+
for i in np.array(decoded[0][0][0]):
|
33 |
+
if i >-1:
|
34 |
+
text += DECODE_DICT[i]
|
35 |
+
# Do nothing if text is empty
|
36 |
+
if not len(text): return
|
37 |
+
license_plate = text
|
38 |
+
text[:3].replace("0",'O')
|
39 |
+
|
40 |
+
return text
|
41 |
+
|
42 |
+
def greet(image):
|
43 |
+
resized = cv2.resize(image, (320,320), interpolation=cv2.INTER_AREA)
|
44 |
+
demo_frame = cv2.resize(image, (680,480), interpolation=cv2.INTER_AREA)
|
45 |
+
input_data = resized.astype(np.float32) # Set as 3D RGB float array
|
46 |
+
input_data /= 255. # Normalize
|
47 |
+
input_data = np.expand_dims(input_data, axis=0) # Batch dimension (wrap in 4D)
|
48 |
+
|
49 |
+
# Initialize input tensor
|
50 |
+
interpreter.set_tensor(input_details[0]['index'], input_data)
|
51 |
+
interpreter.invoke()
|
52 |
+
output_data = interpreter.get_tensor(output_details[0]['index'])
|
53 |
+
|
54 |
+
# Bounding boxes
|
55 |
+
boxes = interpreter.get_tensor(output_details[1]['index'])
|
56 |
+
|
57 |
+
text = None
|
58 |
+
# For index and confidence value of the first class [0]
|
59 |
+
for i, confidence in enumerate(output_data[0]):
|
60 |
+
if confidence > .3:
|
61 |
+
text = execute_text_recognition_tflite(
|
62 |
+
boxes[0][i], image,
|
63 |
+
recog_interpreter, recog_input_details, recog_output_details,
|
64 |
+
)
|
65 |
+
return text
|
66 |
+
image = gr.inputs.Image(shape=(320,320))
|
67 |
+
|
68 |
+
iface = gr.Interface(fn=greet, inputs=image, outputs="text")
|
69 |
iface.launch()
|
detection.tflite
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:9a985cc86131fac5be60478f4c10be416dfe035445b70813d6441ced7d330018
|
3 |
+
size 11495036
|
recognition.tflite
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:b080d01c1c84eaa207c8ca5834070bd76ce8d62fe6a4dce7c31d238462a07796
|
3 |
+
size 820132
|