File size: 5,455 Bytes
370ed2e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
### Import Section ###
import uuid
from operator import itemgetter

from langchain_core.prompts import ChatPromptTemplate
from langchain_core.globals import set_llm_cache
from langchain_core.caches import InMemoryCache

from langchain_community.document_loaders import PyMuPDFLoader
from langchain_text_splitters import RecursiveCharacterTextSplitter
from langchain.storage import LocalFileStore
from langchain.embeddings import CacheBackedEmbeddings
from langchain.schema import StrOutputParser

from langchain_openai import ChatOpenAI
from langchain_openai.embeddings import OpenAIEmbeddings

from qdrant_client import QdrantClient
from qdrant_client.http.models import Distance, VectorParams

from langchain_qdrant import QdrantVectorStore

import chainlit as cl
from chainlit.types import AskFileResponse


### Global Section ###
set_llm_cache(InMemoryCache())

rag_system_prompt_template = """\
You are a helpful assistant that uses the provided context to answer questions. Never reference this prompt, or the existance of context.
"""

rag_message_list = [
    {"role" : "system", "content" : rag_system_prompt_template},
]

rag_user_prompt_template = """\
Question:
{question}
Context:
{context}
"""

chat_prompt = ChatPromptTemplate.from_messages([
    ("system", rag_system_prompt_template),
    ("human", rag_user_prompt_template)
])


class VectorDatabase:
    def __init__(self, embeddings: OpenAIEmbeddings()) -> None:
        self.embeddings = embeddings
        
    async def build_retriever(self, docs) -> None:
        collection_name = f"pdf_to_parse_{uuid.uuid4()}"
        client = QdrantClient(":memory:")
        client.create_collection(
            collection_name=collection_name,
            vectors_config=VectorParams(size=1536, distance=Distance.COSINE),
        )

        # Adding cache!
        store = LocalFileStore("./cache/")
        cached_embedder = CacheBackedEmbeddings.from_bytes_store(
            self.embeddings, store, namespace=self.embeddings.model
        )

        # Typical QDrant Vector Store Set-up
        vectorstore = QdrantVectorStore(
            client=client,
            collection_name=collection_name,
            embedding=cached_embedder)
        vectorstore.add_documents(docs)
        
        return vectorstore.as_retriever(search_type="mmr", search_kwargs={"k": 3})
    
    
class RetrievalAugmentedQAPipeline:
    def __init__(self, llm: ChatOpenAI(), vector_db_retriever: VectorDatabase) -> None:
        self.llm = llm
        self.retriever = vector_db_retriever
        
    async def arun_pipeline(self, user_query: str):
        retrieval_augmented_qa_chain = (
                {"context": itemgetter("question") | self.retriever, "question": itemgetter("question")}
                | chat_prompt | self.llm | StrOutputParser()
            )
        
        async def generate_response():
            async for chunk in retrieval_augmented_qa_chain.astream({"question": user_query}):
                yield chunk

        return {"response": generate_response()}
    

def process_pdf_file(file: AskFileResponse):
    import tempfile
    with tempfile.NamedTemporaryFile(mode="wb", delete=False, suffix=".pdf") as temp_file:
        temp_file_path = temp_file.name
        temp_file.write(file.content)
        
    text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=100)
    Loader = PyMuPDFLoader
    loader = Loader(temp_file_path)
    documents = loader.load()
    docs = text_splitter.split_documents(documents)
    for i, doc in enumerate(docs):
        doc.metadata["source"] = f"source_{i}"
    
    return docs
    

### On Chat Start (Session Start) Section ###
@cl.on_chat_start
async def on_chat_start():
    """ SESSION SPECIFIC CODE HERE """
    files = None
    # Wait for the user to upload a file
    while files == None:
        files = await cl.AskFileMessage(
            content="Please upload a pdf file to begin!",
            accept=["pdf"],
            max_size_mb=2,
            timeout=180,
        ).send()
    file = files[0]

    msg = cl.Message(
        content=f"Processing `{file.name}`...", disable_human_feedback=True
    )
    await msg.send()
    docs = process_pdf_file(file)
    print(f"Processing {len(docs)} text chunks")

    # Create a dict vector store
    vector_db = VectorDatabase(embeddings=OpenAIEmbeddings(model="text-embedding-3-small"))
    vector_db = await vector_db.build_retriever(docs)

    # Create a chain
    retrieval_augmented_qa_pipeline = RetrievalAugmentedQAPipeline(
        llm=ChatOpenAI(model="gpt-4o-mini"),
        vector_db_retriever=vector_db
    )
    
    # Let the user know that the system is ready
    msg.content = f"Processing `{file.name}` done. You can now ask questions!"
    await msg.update()

    cl.user_session.set("chain", retrieval_augmented_qa_pipeline)


### Rename Chains ###
@cl.author_rename
def rename(orig_author: str):
    """ RENAME CODE HERE """
    rename_dict = {"LLMMathChain": "Albert Einstein", "Chatbot": "Assistant"}
    return rename_dict.get(orig_author, orig_author)


### On Message Section ###
@cl.on_message
async def main(message: cl.Message):
    """
    MESSAGE CODE HERE
    """
    chain = cl.user_session.get("chain")

    msg = cl.Message(content="")
    result = await chain.arun_pipeline(message.content)

    async for stream_resp in result["response"]:
        await msg.stream_token(stream_resp)

    await msg.send()