Practica3 / app.py
lauragordo's picture
Update app.py
0eb5004 verified
import torchvision.transforms as transforms
import random
import gradio as gr
import PIL
from fastai.vision.all import *
from huggingface_hub import from_pretrained_fastai
from fastai.basics import *
from fastai.vision import models
from fastai.vision.all import *
from fastai.metrics import *
from fastai.data.all import *
from fastai.callback import *
import numpy as np
from pathlib import Path
try:
import albumentations
except ImportError:
os.system('pip install albumentations')
import albumentations
try:
import toml
except ImportError:
os.system('pip install toml')
import toml
os.system('pip install -U gradio')
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
def get_y_fn (x):
return Path(str(x).replace("Images","Labels").replace("color","gt").replace(".jpg",".png"))
def transform_image(image):
my_transforms = transforms.Compose([transforms.ToTensor(),
transforms.Normalize(
[0.485, 0.456, 0.406],
[0.229, 0.224, 0.225])])
image_aux = image
return my_transforms(image_aux).unsqueeze(0).to(device)
class TargetMaskConvertTransform(ItemTransform):
def __init__(self):
pass
def encodes(self, x):
img,mask = x
#Convert to array
mask = np.array(mask)
mask[mask==255]=1
mask[mask==150]=2
mask[mask==76]=3
mask[mask==74]=3
mask[mask==29]=4
mask[mask==25]=4
mask[((mask!=1)&(mask!=2)&(mask!=3)&(mask!=4))]=0
# Back to PILMask
mask = PILMask.create(mask)
return img, mask
from albumentations import (
Compose,
OneOf,
ElasticTransform,
GridDistortion,
OpticalDistortion,
HorizontalFlip,
VerticalFlip,
Rotate,
Transpose,
CLAHE,
ShiftScaleRotate
)
class SegmentationAlbumentationsTransform(ItemTransform):
split_idx = 0
def __init__(self, aug):
self.aug = aug
def encodes(self, x):
img,mask = x
aug = self.aug(image=np.array(img), mask=np.array(mask))
return PILImage.create(aug["image"]), PILMask.create(aug["mask"])
# repo_id = "YOUR_USERNAME/YOUR_LEARNER_NAME"
repo_id = "lauragordo/model3"
#path_images = path/"Images"
#trainDLS = trainDB.dataloaders(path_images,bs=bs)
#learn = unet_learner(trainDLS,resnet50,metrics=[DiceMulti(), JaccardCoeff()]).to_fp16()
learn = from_pretrained_fastai(repo_id)
model=learn.model
model=model.cpu()
#labels = learner.dls.vocab
#classes = learner.dls.vocab[1]
def predict(img):
img = PILImage.create(img)
image = transforms.Resize((480,640))(img)
tensor = transform_image(image=image)
model.to(device)
with torch.no_grad():
outputs = model(tensor)
outputs = torch.argmax(outputs,1)
mask = np.array(outputs.cpu())
mask[mask==0]=255
mask[mask==1]=150
mask[mask==2]=76
mask[mask==3]=25
mask[mask==4]=0
mask=np.reshape(mask,(480,640))
return Image.fromarray(mask.astype('uint8'))
# Creamos la interfaz y la lanzamos.
gr.Interface(fn=predict, inputs=["image"], outputs=["image"],examples=['color_184.jpg','color_154.jpg']).launch(share=True)