File size: 20,020 Bytes
1bf21f5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3098121
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
# noaa_incidents.py

import os
import hashlib
import json
import pickle
import threading
import time
from pathlib import Path
from datetime import datetime
from typing import Dict, List, Optional, Tuple
import logging

import pandas as pd
import requests
from bs4 import BeautifulSoup
from concurrent.futures import ThreadPoolExecutor, as_completed
from tqdm import tqdm

import chromadb
from chromadb.utils import embedding_functions
from chromadb.config import Settings

# Configure logging
logging.basicConfig(
    level=logging.INFO,
    format='%(asctime)s - %(levelname)s - %(message)s'
)
logger = logging.getLogger(__name__)

# Constants
BASE_URL = "https://incidentnews.noaa.gov"
BROWSE_URL = f"{BASE_URL}/browse/date"
OUTPUT_DIR = Path("output")
CACHE_DIR = Path("cache")
MAX_RETRIES = 3
BATCH_SIZE = 500

class NOAAIncidentScraper:
    """
    Scrapes NOAA Incident News data with caching and multi-threading support.
    Optimized for Hugging Face Spaces environment.
    """
    def __init__(self, max_workers: int = 5, cache_dir: str = 'cache'):
        """
        Initialize the scraper with custom configuration.

        Args:
            max_workers (int): Maximum number of concurrent threads
            cache_dir (str): Directory for caching web responses
        """
        self.base_url = BASE_URL
        self.browse_url = BROWSE_URL
        self.headers = {
            'User-Agent': ('Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 '
                         '(KHTML, like Gecko) Chrome/91.0.4472.124 Safari/537.36')
        }
        self.incidents_data = []
        self.data_lock = threading.Lock()
        self.max_workers = max_workers
        self.cache_dir = Path(cache_dir)
        self.cache_dir.mkdir(exist_ok=True)
        self.session = requests.Session()
        self.session.headers.update(self.headers)

    def get_cache_path(self, url: str) -> Path:
        """Generate a cache file path for a given URL."""
        url_hash = hashlib.md5(url.encode()).hexdigest()
        return self.cache_dir / f"{url_hash}.cache"

    def get_cached_response(self, url: str) -> Optional[str]:
        """Retrieve cached response for a URL."""
        cache_path = self.get_cache_path(url)
        if cache_path.exists():
            try:
                with cache_path.open('rb') as f:
                    return pickle.load(f)
            except Exception as e:
                logger.warning(f"Error loading cache for {url}: {e}")
                return None
        return None

    def cache_response(self, url: str, content: str):
        """Cache response content for a URL."""
        cache_path = self.get_cache_path(url)
        try:
            with cache_path.open('wb') as f:
                pickle.dump(content, f)
        except Exception as e:
            logger.warning(f"Error caching response for {url}: {e}")

    def fetch_url(self, url: str, use_cache: bool = True) -> Optional[str]:
        """
        Fetch URL content with caching and retry mechanism.
        
        Args:
            url (str): URL to fetch
            use_cache (bool): Whether to use cached response
        
        Returns:
            Optional[str]: Response content or None if failed
        """
        if use_cache:
            cached = self.get_cached_response(url)
            if cached:
                return cached

        for attempt in range(MAX_RETRIES):
            try:
                response = self.session.get(url, timeout=10)
                response.raise_for_status()
                content = response.text
                
                if use_cache:
                    self.cache_response(url, content)
                return content
                
            except requests.RequestException as e:
                wait_time = min(2 ** attempt, 10)  # Exponential backoff with max 10s
                logger.warning(f"Attempt {attempt + 1}/{MAX_RETRIES} failed for {url}: {e}")
                
                if attempt < MAX_RETRIES - 1:
                    logger.info(f"Retrying in {wait_time} seconds...")
                    time.sleep(wait_time)
                else:
                    logger.error(f"Failed to fetch {url} after {MAX_RETRIES} attempts")
                    
        return None

    def validate_incident_data(self, incident_data: Dict) -> bool:
        """
        Validate scraped incident data.
        
        Args:
            incident_data (Dict): Incident data to validate
            
        Returns:
            bool: True if data is valid
        """
        required_fields = ['title', 'date', 'location']
        return all(incident_data.get(field) for field in required_fields)

    def get_total_pages(self) -> int:
        """Get the total number of pages to scrape."""
        content = self.fetch_url(self.browse_url)
        if not content:
            return 0

        try:
            soup = BeautifulSoup(content, 'html.parser')
            pagination = soup.find('ul', class_='pagination')
            if pagination:
                last_page = int(pagination.find_all('li')[-2].text)
                return last_page
        except Exception as e:
            logger.error(f"Error determining total pages: {e}")
            
        return 1

    def scrape_incident_page(self, incident_url: str, use_cache: bool = True) -> Optional[Dict]:
        """
        Scrape detailed information from an individual incident page.
        
        Args:
            incident_url (str): URL of the incident page
            use_cache (bool): Whether to use cached response
            
        Returns:
            Optional[Dict]: Incident data or None if failed
        """
        try:
            full_url = f"{self.base_url}{incident_url}"
            content = self.fetch_url(full_url, use_cache)
            if not content:
                return None

            soup = BeautifulSoup(content, 'html.parser')
            incident_details = {}

            # Extract Title
            title = soup.find('h1')
            incident_details['title'] = title.text.strip() if title else None

            # Extract Initial Notification
            initial_notification = soup.find('p', class_='sub')
            incident_details['initial_notification'] = (
                initial_notification.text.strip() if initial_notification else None
            )

            # Extract Location and Date
            location_date = soup.find('p', class_='')
            if location_date:
                location = location_date.find('span', class_='glyphicon-map-marker')
                if location and location.next_sibling:
                    incident_details['location'] = location.next_sibling.strip()

                date = location_date.find('span', class_='incident-date')
                if date:
                    incident_details['date'] = date.text.strip()

            # Extract Additional Details from Table
            details_table = soup.find('table', class_='table')
            if details_table:
                for row in details_table.find_all('tr'):
                    cols = row.find_all('td')
                    if len(cols) == 2:
                        key = cols[0].text.strip().rstrip(':').lower().replace(' ', '_')
                        value = cols[1].text.strip()
                        incident_details[key] = value

            if not self.validate_incident_data(incident_details):
                logger.warning(f"Invalid incident data for {incident_url}")
                return None

            return incident_details

        except Exception as e:
            logger.error(f"Error scraping incident page {incident_url}: {e}")
            return None

    def scrape_listing_page(self, page_number: int, use_cache: bool = True) -> List[str]:
        """
        Scrape a single listing page of incidents.
        
        Args:
            page_number (int): Page number to scrape
            use_cache (bool): Whether to use cached response
            
        Returns:
            List[str]: List of incident URLs
        """
        url = f"{self.browse_url}?page={page_number}"
        try:
            content = self.fetch_url(url, use_cache)
            if not content:
                return []

            soup = BeautifulSoup(content, 'html.parser')
            incidents_table = soup.find('table', class_='incident-links')
            if not incidents_table:
                logger.warning(f"No incidents table found on page {page_number}")
                return []

            incident_urls = []
            for row in incidents_table.find_all('tr')[1:]:  # Skip header row
                cols = row.find_all('td')
                if len(cols) >= 3:
                    incident_link = cols[0].find('a')
                    if incident_link and 'href' in incident_link.attrs:
                        incident_urls.append(incident_link['href'])

            return incident_urls

        except Exception as e:
            logger.error(f"Error scraping listing page {page_number}: {e}")
            return []

    def process_incident(self, incident_url: str, use_cache: bool = True) -> Optional[str]:
        """Process a single incident URL with thread safety."""
        incident_data = self.scrape_incident_page(incident_url, use_cache)
        if incident_data:
            with self.data_lock:
                self.incidents_data.append(incident_data)
            return incident_url
        return None

    def save_data(self) -> Tuple[str, str]:
        """
        Save the scraped data to CSV and JSON files.
        
        Returns:
            Tuple[str, str]: Paths to saved CSV and JSON files
        """
        OUTPUT_DIR.mkdir(exist_ok=True)
        timestamp = datetime.now().strftime('%Y%m%d_%H%M%S')

        try:
            # Save to CSV
            csv_filename = OUTPUT_DIR / f'noaa_incidents_{timestamp}.csv'
            df = pd.DataFrame(self.incidents_data)
            df.to_csv(csv_filename, index=False)

            # Save to JSON
            json_filename = OUTPUT_DIR / f'noaa_incidents_{timestamp}.json'
            with open(json_filename, 'w', encoding='utf-8') as f:
                json.dump(self.incidents_data, f, indent=4)

            logger.info(f"Data saved to {csv_filename} and {json_filename}")
            return str(csv_filename), str(json_filename)

        except Exception as e:
            logger.error(f"Error saving data: {e}")
            return None, None

    def run(self, validate_first: bool = True) -> Tuple[Optional[str], Optional[str]]:
        """
        Run the complete scraping process.
        
        Args:
            validate_first (bool): Whether to validate first page before full scrape
            
        Returns:
            Tuple[Optional[str], Optional[str]]: Paths to saved CSV and JSON files
        """
        logger.info("Starting NOAA IncidentNews scraper...")

        if validate_first:
            logger.info("Performing initial validation run...")
            test_page = self.scrape_listing_page(1, use_cache=False)
            if not test_page:
                logger.error("Unable to scrape the first page. Aborting.")
                return None, None

            test_incident = self.scrape_incident_page(test_page[0], use_cache=False)
            if not test_incident:
                logger.error("Unable to scrape test incident. Aborting.")
                return None, None

            logger.info("Validation successful, proceeding with full scrape...")

        total_pages = self.get_total_pages()
        logger.info(f"Found {total_pages} pages to scrape")

        # Collect incident URLs
        all_incident_urls = []
        logger.info("Collecting incident URLs...")
        with tqdm(total=total_pages, desc="Collecting URLs") as pbar:
            for page in range(1, total_pages + 1):
                urls = self.scrape_listing_page(page)
                all_incident_urls.extend(urls)
                pbar.update(1)

        total_incidents = len(all_incident_urls)
        logger.info(f"Found {total_incidents} incidents to process")

        if total_incidents == 0:
            logger.error("No incidents found to process")
            return None, None

        # Process incidents
        logger.info("Processing incidents...")
        with ThreadPoolExecutor(max_workers=self.max_workers) as executor:
            futures = [
                executor.submit(self.process_incident, url) 
                for url in all_incident_urls
            ]

            with tqdm(total=total_incidents, desc="Scraping incidents") as pbar:
                for future in as_completed(futures):
                    try:
                        future.result()
                        pbar.update(1)
                    except Exception as e:
                        logger.error(f"Error processing incident: {e}")

        logger.info(f"Scraped {len(self.incidents_data)} incidents")
        
        if self.incidents_data:
            return self.save_data()
        else:
            logger.error("No incident data scraped")
            return None, None


class NOAAIncidentDB:
    """
    Manages NOAA incident data using ChromaDB for vector storage and search.
    """
    def __init__(self, 
                 persist_directory: str = "noaa_db",
                 embedding_model: str = "all-MiniLM-L6-v2"):
        """
        Initialize the database with ChromaDB settings.
        
        Args:
            persist_directory (str): Directory for ChromaDB storage
            embedding_model (str): Model name for embeddings
        """
        self.persist_directory = persist_directory
        os.makedirs(self.persist_directory, exist_ok=True)

        # Initialize ChromaDB client
        self.client = chromadb.Client(Settings(
            persist_directory=self.persist_directory,
            anonymized_telemetry=False
        ))

        # Setup embedding function
        self.embedding_function = embedding_functions.SentenceTransformerEmbeddingFunction(
            model_name=embedding_model
        )

        # Get or create collection
        self.collection = self.client.get_or_create_collection(
            name="noaa_incidents",
            embedding_function=self.embedding_function,
            metadata={"description": "NOAA incident reports database"}
        )

    def load_incidents(self, csv_path: str) -> int:
        """
        Load incidents from CSV into ChromaDB.
        
        Args:
            csv_path (str): Path to CSV file
            
        Returns:
            int: Number of incidents loaded
        """
        logger.info(f"Loading incidents from {csv_path}")

        try:
            df = pd.read_csv(csv_path, dtype=str)
            df = df.where(pd.notna(df), None)

            documents = []
            metadatas = []
            ids = []

            for idx, row in df.iterrows():
                # Generate unique ID
                # Continue from the previous code...
                # Generate unique ID using title, date, location and index
                unique_string = str(row.get('title', '')) + '_' + str(row.get('date', '')) + '_' + str(row.get('location', '')) + '_' + str(idx)
                incident_id = "incident_" + hashlib.md5(unique_string.encode()).hexdigest()[:8]

                # Create searchable document content
                doc_content = "\n".join([
                    "Incident: " + str(row.get('title', 'N/A')),
                    "Location: " + str(row.get('location', 'N/A')),
                    "Date: " + str(row.get('date', 'N/A')),
                    "Details: " + str(row.get('initial_notification', ''))
                ])

                # Create metadata
                metadata = {
                    'title': str(row.get('title', 'N/A')),
                    'date': str(row.get('date', 'N/A')),
                    'location': str(row.get('location', 'N/A'))
                }

                # Add any additional fields present
                for col in df.columns:
                    if col not in ['title', 'date', 'location'] and pd.notna(row[col]):
                        metadata[col.lower().replace(' ', '_')] = str(row[col])

                documents.append(doc_content.strip())
                metadatas.append(metadata)
                ids.append(incident_id)

            # Add to database in batches
            total_documents = len(documents)
            for i in range(0, total_documents, BATCH_SIZE):
                batch_end = min(i + BATCH_SIZE, total_documents)
                self.collection.add(
                    documents=documents[i:batch_end],
                    metadatas=metadatas[i:batch_end],
                    ids=ids[i:batch_end]
                )
                logger.info(f"Added batch {i // BATCH_SIZE + 1} with {batch_end - i} incidents")

            logger.info(f"Successfully loaded {total_documents} incidents into ChromaDB")
            return total_documents

        except Exception as e:
            logger.error(f"Error loading incidents from CSV: {e}")
            return 0

    def search(self, query: str, n_results: int = 5) -> List[Dict]:
        """
        Search for incidents matching the query.
        
        Args:
            query (str): Search query
            n_results (int): Number of results to return
            
        Returns:
            List[Dict]: List of matching incidents
        """
        try:
            results = self.collection.query(
                query_texts=[query],
                n_results=n_results,
                include=['metadatas', 'documents', 'ids']
            )

            formatted_results = []
            for doc, metadata, incident_id in zip(
                results['documents'][0],
                results['metadatas'][0],
                results['ids'][0]
            ):
                result = {
                    'id': incident_id,
                    'title': metadata.get('title', 'N/A'),
                    'date': metadata.get('date', 'N/A'),
                    'location': metadata.get('location', 'N/A'),
                    'details': doc,
                    'metadata': metadata
                }
                formatted_results.append(result)

            return formatted_results

        except Exception as e:
            logger.error(f"Error during search: {e}")
            return []

    def delete_collection(self):
        """Delete the current collection."""
        try:
            self.client.delete_collection("noaa_incidents")
            logger.info("Collection deleted successfully")
        except Exception as e:
            logger.error(f"Error deleting collection: {e}")

    def get_collection_stats(self) -> Dict:
        """
        Get statistics about the current collection.
        
        Returns:
            Dict: Collection statistics
        """
        try:
            count = self.collection.count()
            return {
                "total_documents": count,
                "collection_name": "noaa_incidents",
                "embedding_model": self.embedding_function.model_name
            }
        except Exception as e:
            logger.error(f"Error getting collection stats: {e}")
            return {}

if __name__ == "__main__":
    # Example usage
    scraper = NOAAIncidentScraper(max_workers=5)
    csv_file, json_file = scraper.run(validate_first=True)
    
    if csv_file:
        db = NOAAIncidentDB()
        num_loaded = db.load_incidents(csv_file)
        logger.info(f"Loaded {num_loaded} incidents into database")
        
        # Example search
        results = db.search("oil spill near coral reefs", n_results=5)
        for i, result in enumerate(results, 1):
            print(f"\nResult {i}:")
            print(f"Title: {result['title']}")
            print(f"Date: {result['date']}")
            print(f"Location: {result['location']}")
            print(f"Details: {result['details']}\n")