Spaces:
Running
on
Zero
Running
on
Zero
Commit
•
e1ad51f
1
Parent(s):
7da21f5
Update app.py
Browse files
app.py
CHANGED
@@ -24,7 +24,7 @@ pipe = FluxPipeline.from_pretrained("black-forest-labs/FLUX.1-schnell",
|
|
24 |
torch_dtype=torch.bfloat16)
|
25 |
|
26 |
pipe.transformer.to(memory_format=torch.channels_last)
|
27 |
-
|
28 |
#pipe.enable_model_cpu_offload()
|
29 |
clip_slider = CLIPSliderFlux(pipe, device=torch.device("cuda"))
|
30 |
|
@@ -74,6 +74,8 @@ def generate(concept_1, concept_2, scale, prompt, seed, recalc_directions, itera
|
|
74 |
for i in range(interm_steps):
|
75 |
cur_scale = low_scale + (high_scale - low_scale) * i / (interm_steps - 1)
|
76 |
image = clip_slider.generate(prompt,
|
|
|
|
|
77 |
#guidance_scale=guidance_scale,
|
78 |
scale=cur_scale, seed=seed, num_inference_steps=steps, avg_diff=avg_diff)
|
79 |
images.append(image)
|
@@ -115,6 +117,8 @@ def update_scales(x,prompt,seed, steps, interm_steps, guidance_scale,
|
|
115 |
for i in range(interm_steps):
|
116 |
cur_scale = low_scale + (high_scale - low_scale) * i / (steps - 1)
|
117 |
image = clip_slider.generate(prompt,
|
|
|
|
|
118 |
#guidance_scale=guidance_scale,
|
119 |
scale=cur_scale, seed=seed, num_inference_steps=steps, avg_diff=avg_diff)
|
120 |
images.append(image)
|
|
|
24 |
torch_dtype=torch.bfloat16)
|
25 |
|
26 |
pipe.transformer.to(memory_format=torch.channels_last)
|
27 |
+
pipe.transformer = torch.compile(pipe.transformer, mode="max-autotune", fullgraph=True)
|
28 |
#pipe.enable_model_cpu_offload()
|
29 |
clip_slider = CLIPSliderFlux(pipe, device=torch.device("cuda"))
|
30 |
|
|
|
74 |
for i in range(interm_steps):
|
75 |
cur_scale = low_scale + (high_scale - low_scale) * i / (interm_steps - 1)
|
76 |
image = clip_slider.generate(prompt,
|
77 |
+
width=768,
|
78 |
+
height=768,
|
79 |
#guidance_scale=guidance_scale,
|
80 |
scale=cur_scale, seed=seed, num_inference_steps=steps, avg_diff=avg_diff)
|
81 |
images.append(image)
|
|
|
117 |
for i in range(interm_steps):
|
118 |
cur_scale = low_scale + (high_scale - low_scale) * i / (steps - 1)
|
119 |
image = clip_slider.generate(prompt,
|
120 |
+
width=768,
|
121 |
+
height=768,
|
122 |
#guidance_scale=guidance_scale,
|
123 |
scale=cur_scale, seed=seed, num_inference_steps=steps, avg_diff=avg_diff)
|
124 |
images.append(image)
|