Spaces:
Running
on
Zero
Running
on
Zero
Commit
•
9d731d3
1
Parent(s):
2d475e1
Update app.py
Browse files
app.py
CHANGED
@@ -7,17 +7,9 @@ import numpy as np
|
|
7 |
import cv2
|
8 |
from PIL import Image
|
9 |
from diffusers.utils import load_image
|
10 |
-
from diffusers.pipelines.flux.pipeline_flux_controlnet import FluxControlNetPipeline
|
11 |
-
from diffusers.models.controlnet_flux import FluxControlNetModel
|
12 |
from diffusers.utils import export_to_gif
|
13 |
import random
|
14 |
|
15 |
-
def process_controlnet_img(image):
|
16 |
-
controlnet_img = np.array(image)
|
17 |
-
controlnet_img = cv2.Canny(controlnet_img, 100, 200)
|
18 |
-
controlnet_img = HWC3(controlnet_img)
|
19 |
-
controlnet_img = Image.fromarray(controlnet_img)
|
20 |
-
|
21 |
# load pipelines
|
22 |
base_model = "black-forest-labs/FLUX.1-schnell"
|
23 |
|
@@ -32,11 +24,6 @@ pipe.transformer.to(memory_format=torch.channels_last)
|
|
32 |
clip_slider = CLIPSliderFlux(pipe, device=torch.device("cuda"))
|
33 |
|
34 |
|
35 |
-
# controlnet_model = 'InstantX/FLUX.1-dev-Controlnet-Canny-alpha'
|
36 |
-
# controlnet = FluxControlNetModel.from_pretrained(controlnet_model, torch_dtype=torch.bfloat16)
|
37 |
-
# pipe_controlnet = FluxControlNetPipeline.from_pretrained(base_model, controlnet=controlnet, torch_dtype=torch.bfloat16)
|
38 |
-
# t5_slider_controlnet = T5SliderFlux(sd_pipe=pipe_controlnet,device=torch.device("cuda"))
|
39 |
-
|
40 |
MAX_SEED = 2**32-1
|
41 |
|
42 |
def convert_to_centered_scale(num):
|
@@ -56,8 +43,6 @@ def convert_to_centered_scale(num):
|
|
56 |
def generate(concept_1, concept_2, scale, prompt, randomize_seed=True, seed=42, recalc_directions=True, iterations=200, steps=4, interm_steps=9, guidance_scale=3.5,
|
57 |
x_concept_1="", x_concept_2="",
|
58 |
avg_diff_x=None,
|
59 |
-
img2img_type = None, img = None,
|
60 |
-
controlnet_scale= None, ip_adapter_scale=None,
|
61 |
total_images=[],
|
62 |
progress=gr.Progress(track_tqdm=True)
|
63 |
):
|
@@ -65,12 +50,10 @@ def generate(concept_1, concept_2, scale, prompt, randomize_seed=True, seed=42,
|
|
65 |
# check if avg diff for directions need to be re-calculated
|
66 |
print("slider_x", slider_x)
|
67 |
print("x_concept_1", x_concept_1, "x_concept_2", x_concept_2)
|
68 |
-
#torch.manual_seed(seed)
|
69 |
if randomize_seed:
|
70 |
seed = random.randint(0, MAX_SEED)
|
71 |
|
72 |
if not sorted(slider_x) == sorted([x_concept_1, x_concept_2]) or recalc_directions:
|
73 |
-
#avg_diff = clip_slider.find_latent_direction(slider_x[0], slider_x[1], num_iterations=iterations).to(torch.float16)
|
74 |
avg_diff = clip_slider.find_latent_direction(slider_x[0], slider_x[1], num_iterations=iterations)
|
75 |
x_concept_1, x_concept_2 = slider_x[0], slider_x[1]
|
76 |
|
@@ -82,7 +65,7 @@ def generate(concept_1, concept_2, scale, prompt, randomize_seed=True, seed=42,
|
|
82 |
image = clip_slider.generate(prompt,
|
83 |
width=768,
|
84 |
height=768,
|
85 |
-
|
86 |
scale=cur_scale, seed=seed, num_inference_steps=steps, avg_diff=avg_diff)
|
87 |
images.append(image)
|
88 |
canvas = Image.new('RGB', (256*interm_steps, 256))
|
@@ -100,46 +83,6 @@ def generate(concept_1, concept_2, scale, prompt, randomize_seed=True, seed=42,
|
|
100 |
|
101 |
return x_concept_1,x_concept_2, avg_diff_x, export_to_gif(images, "clip.gif", fps=5), canvas, images, images[scale_middle], post_generation_slider_update, seed
|
102 |
|
103 |
-
@spaces.GPU
|
104 |
-
def update_scales(x,prompt,seed, steps, interm_steps, guidance_scale,
|
105 |
-
avg_diff_x,
|
106 |
-
img2img_type = None, img = None,
|
107 |
-
controlnet_scale= None, ip_adapter_scale=None, total_images=[], progress=gr.Progress(track_tqdm=True)):
|
108 |
-
print("Hola", x)
|
109 |
-
avg_diff = avg_diff_x.cuda()
|
110 |
-
|
111 |
-
# for spectrum generation
|
112 |
-
images = []
|
113 |
-
|
114 |
-
high_scale = x
|
115 |
-
low_scale = -1 * x
|
116 |
-
|
117 |
-
if img2img_type=="controlnet canny" and img is not None:
|
118 |
-
control_img = process_controlnet_img(img)
|
119 |
-
image = t5_slider_controlnet.generate(prompt, guidance_scale=guidance_scale, image=control_img, controlnet_conditioning_scale =controlnet_scale, scale=x, seed=seed, num_inference_steps=steps, avg_diff=avg_diff)
|
120 |
-
elif img2img_type=="ip adapter" and img is not None:
|
121 |
-
image = clip_slider.generate(prompt, guidance_scale=guidance_scale, ip_adapter_image=img, scale=x,seed=seed, num_inference_steps=steps, avg_diff=avg_diff)
|
122 |
-
else:
|
123 |
-
for i in range(interm_steps):
|
124 |
-
cur_scale = low_scale + (high_scale - low_scale) * i / (steps - 1)
|
125 |
-
image = clip_slider.generate(prompt,
|
126 |
-
width=768,
|
127 |
-
height=768,
|
128 |
-
#guidance_scale=guidance_scale,
|
129 |
-
scale=cur_scale, seed=seed, num_inference_steps=steps, avg_diff=avg_diff)
|
130 |
-
images.append(image)
|
131 |
-
canvas = Image.new('RGB', (256*interm_steps, 256))
|
132 |
-
for i, im in enumerate(images):
|
133 |
-
canvas.paste(im.resize((256,256)), (256 * i, 0))
|
134 |
-
|
135 |
-
scale_total = convert_to_centered_scale(interm_steps)
|
136 |
-
scale_min = scale_total[0]
|
137 |
-
scale_max = scale_total[-1]
|
138 |
-
scale_middle = scale_total.index(0)
|
139 |
-
post_generation_slider_update = gr.update(minimum=scale_min, maximum=scale_max, visible=True)
|
140 |
-
|
141 |
-
return export_to_gif(images, "clip.gif", fps=5), canvas, images, images[scale_middle], post_generation_slider_update
|
142 |
-
|
143 |
def update_pre_generated_images(slider_value, total_images):
|
144 |
number_images = len(total_images)
|
145 |
if(number_images > 0):
|
@@ -151,39 +94,11 @@ def update_pre_generated_images(slider_value, total_images):
|
|
151 |
def reset_recalc_directions():
|
152 |
return True
|
153 |
|
154 |
-
|
155 |
-
#group {
|
156 |
-
position: relative;
|
157 |
-
width: 600px; /* Increased width */
|
158 |
-
height: 600px; /* Increased height */
|
159 |
-
margin-bottom: 20px;
|
160 |
-
background-color: white;
|
161 |
-
}
|
162 |
-
#x {
|
163 |
-
position: absolute;
|
164 |
-
bottom: 20px; /* Moved further down */
|
165 |
-
left: 30px; /* Adjusted left margin */
|
166 |
-
width: 540px; /* Increased width to match the new container size */
|
167 |
-
}
|
168 |
-
#y {
|
169 |
-
position: absolute;
|
170 |
-
bottom: 200px; /* Increased bottom margin to ensure proper spacing from #x */
|
171 |
-
left: 20px; /* Adjusted left margin */
|
172 |
-
width: 540px; /* Increased width to match the new container size */
|
173 |
-
transform: rotate(-90deg);
|
174 |
-
transform-origin: left bottom;
|
175 |
-
}
|
176 |
-
#image_out {
|
177 |
-
position: absolute;
|
178 |
-
width: 80%; /* Adjust width as needed */
|
179 |
-
right: 10px;
|
180 |
-
top: 10px; /* Increased top margin to clear space occupied by #x */
|
181 |
-
}
|
182 |
-
'''
|
183 |
intro = """
|
184 |
<div style="display: flex;align-items: center;justify-content: center">
|
185 |
-
<img src="https://huggingface.co/spaces/LatentNavigation/latentnavigation-flux/resolve/main/Group 4-16.png" width="
|
186 |
-
<h1 style="margin-left: 12px;text-align: center;margin-bottom: 7px;display: inline-block">Latent Navigation</h1>
|
187 |
</div>
|
188 |
<div style="display: flex;align-items: center;justify-content: center">
|
189 |
<h3 style="display: inline-block;margin-left: 10px;margin-top: 6px;font-weight: 500">Exploring CLIP text space with FLUX.1 schnell 🪐</h3>
|
@@ -205,6 +120,8 @@ image_seq = gr.Image(label="Strip", elem_id="strip")
|
|
205 |
output_image = gr.Image(label="Gif", elem_id="gif")
|
206 |
post_generation_image = gr.Image(label="Generated Images")
|
207 |
post_generation_slider = gr.Slider(minimum=-2, maximum=2, value=0, step=1, interactive=False)
|
|
|
|
|
208 |
with gr.Blocks(css=css) as demo:
|
209 |
|
210 |
gr.HTML(intro)
|
@@ -212,22 +129,16 @@ with gr.Blocks(css=css) as demo:
|
|
212 |
x_concept_1 = gr.State("")
|
213 |
x_concept_2 = gr.State("")
|
214 |
total_images = gr.State([])
|
215 |
-
# y_concept_1 = gr.State("")
|
216 |
-
# y_concept_2 = gr.State("")
|
217 |
|
218 |
avg_diff_x = gr.State()
|
219 |
-
#avg_diff_y = gr.State()
|
220 |
|
221 |
recalc_directions = gr.State(False)
|
222 |
|
223 |
-
#with gr.Tab("text2image"):
|
224 |
with gr.Row():
|
225 |
with gr.Column():
|
226 |
with gr.Row():
|
227 |
concept_1 = gr.Textbox(label="1st direction to steer", placeholder="winter")
|
228 |
concept_2 = gr.Textbox(label="2nd direction to steer", placeholder="summer")
|
229 |
-
#slider_x = gr.Dropdown(label="Slider concept range", allow_custom_value=True, multiselect=True, max_choices=2)
|
230 |
-
#slider_y = gr.Dropdown(label="Slider Y concept range", allow_custom_value=True, multiselect=True, max_choices=2)
|
231 |
prompt = gr.Textbox(label="Prompt", info="Describe what you to be steered by the directions", placeholder="A dog in the park")
|
232 |
x = gr.Slider(minimum=0, value=1.5, step=0.1, maximum=4.0, label="Strength", info="maximum strength on each direction (unstable beyond 2.5)")
|
233 |
submit = gr.Button("Generate directions")
|
@@ -242,15 +153,12 @@ with gr.Blocks(css=css) as demo:
|
|
242 |
with gr.Group(elem_id="group"):
|
243 |
post_generation_image.render()
|
244 |
post_generation_slider.render()
|
245 |
-
#y = gr.Slider(minimum=-10, value=0, maximum=10, elem_id="y", interactive=False)
|
246 |
with gr.Row():
|
247 |
with gr.Column(scale=4, min_width=50):
|
248 |
image_seq.render()
|
249 |
|
250 |
with gr.Column(scale=2, min_width=50):
|
251 |
output_image.render()
|
252 |
-
# with gr.Row():
|
253 |
-
# generate_butt = gr.Button("generate")
|
254 |
|
255 |
with gr.Accordion(label="advanced options", open=False):
|
256 |
iterations = gr.Slider(label = "num iterations for clip directions", minimum=0, value=200, maximum=500, step=1)
|
@@ -264,67 +172,14 @@ with gr.Blocks(css=css) as demo:
|
|
264 |
value=3.5,
|
265 |
)
|
266 |
randomize_seed = gr.Checkbox(True, label="Randomize seed")
|
267 |
-
seed
|
268 |
-
|
269 |
-
|
270 |
-
# with gr.Tab(label="image2image"):
|
271 |
-
# with gr.Row():
|
272 |
-
# with gr.Column():
|
273 |
-
# image = gr.ImageEditor(type="pil", image_mode="L", crop_size=(512, 512))
|
274 |
-
# slider_x_a = gr.Dropdown(label="Slider X concept range", allow_custom_value=True, multiselect=True, max_choices=2)
|
275 |
-
# slider_y_a = gr.Dropdown(label="Slider X concept range", allow_custom_value=True, multiselect=True, max_choices=2)
|
276 |
-
# img2img_type = gr.Radio(["controlnet canny", "ip adapter"], label="", info="", visible=False, value="controlnet canny")
|
277 |
-
# prompt_a = gr.Textbox(label="Prompt")
|
278 |
-
# submit_a = gr.Button("Submit")
|
279 |
-
# with gr.Column():
|
280 |
-
# with gr.Group(elem_id="group"):
|
281 |
-
# x_a = gr.Slider(minimum=-10, value=0, maximum=10, elem_id="x", interactive=False)
|
282 |
-
# y_a = gr.Slider(minimum=-10, value=0, maximum=10, elem_id="y", interactive=False)
|
283 |
-
# output_image_a = gr.Image(elem_id="image_out")
|
284 |
-
# with gr.Row():
|
285 |
-
# generate_butt_a = gr.Button("generate")
|
286 |
-
|
287 |
-
# with gr.Accordion(label="advanced options", open=False):
|
288 |
-
# iterations_a = gr.Slider(label = "num iterations", minimum=0, value=200, maximum=300)
|
289 |
-
# steps_a = gr.Slider(label = "num inference steps", minimum=1, value=8, maximum=30)
|
290 |
-
# guidance_scale_a = gr.Slider(
|
291 |
-
# label="Guidance scale",
|
292 |
-
# minimum=0.1,
|
293 |
-
# maximum=10.0,
|
294 |
-
# step=0.1,
|
295 |
-
# value=5,
|
296 |
-
# )
|
297 |
-
# controlnet_conditioning_scale = gr.Slider(
|
298 |
-
# label="controlnet conditioning scale",
|
299 |
-
# minimum=0.5,
|
300 |
-
# maximum=5.0,
|
301 |
-
# step=0.1,
|
302 |
-
# value=0.7,
|
303 |
-
# )
|
304 |
-
# ip_adapter_scale = gr.Slider(
|
305 |
-
# label="ip adapter scale",
|
306 |
-
# minimum=0.5,
|
307 |
-
# maximum=5.0,
|
308 |
-
# step=0.1,
|
309 |
-
# value=0.8,
|
310 |
-
# visible=False
|
311 |
-
# )
|
312 |
-
# seed_a = gr.Slider(minimum=0, maximum=np.iinfo(np.int32).max, label="Seed", interactive=True, randomize=True)
|
313 |
-
|
314 |
-
# submit.click(fn=generate,
|
315 |
-
# inputs=[slider_x, slider_y, prompt, seed, iterations, steps, guidance_scale, x_concept_1, x_concept_2, y_concept_1, y_concept_2, avg_diff_x, avg_diff_y],
|
316 |
-
# outputs=[x, y, x_concept_1, x_concept_2, y_concept_1, y_concept_2, avg_diff_x, avg_diff_y, output_image])
|
317 |
submit.click(fn=generate,
|
318 |
inputs=[concept_1, concept_2, x, prompt, randomize_seed, seed, recalc_directions, iterations, steps, interm_steps, guidance_scale, x_concept_1, x_concept_2, avg_diff_x, total_images],
|
319 |
outputs=[x_concept_1, x_concept_2, avg_diff_x, output_image, image_seq, total_images, post_generation_image, post_generation_slider, seed])
|
320 |
|
321 |
iterations.change(fn=reset_recalc_directions, outputs=[recalc_directions])
|
322 |
seed.change(fn=reset_recalc_directions, outputs=[recalc_directions])
|
323 |
-
#x.release(fn=update_scales, inputs=[x, prompt, seed, steps, interm_steps, guidance_scale, avg_diff_x, total_images], outputs=[output_image, image_seq, total_images, post_generation_image, post_generation_slider], trigger_mode='always_last')
|
324 |
-
# generate_butt_a.click(fn=update_scales, inputs=[x_a,y_a, prompt_a, seed_a, steps_a, guidance_scale_a, avg_diff_x, avg_diff_y, img2img_type, image, controlnet_conditioning_scale, ip_adapter_scale], outputs=[output_image_a])
|
325 |
-
# submit_a.click(fn=generate,
|
326 |
-
# inputs=[slider_x_a, slider_y_a, prompt_a, seed_a, iterations_a, steps_a, guidance_scale_a, x_concept_1, x_concept_2, y_concept_1, y_concept_2, avg_diff_x, avg_diff_y, img2img_type, image, controlnet_conditioning_scale, ip_adapter_scale],
|
327 |
-
# outputs=[x_a, y_a, x_concept_1, x_concept_2, y_concept_1, y_concept_2, avg_diff_x, avg_diff_y, output_image_a])
|
328 |
post_generation_slider.change(fn=update_pre_generated_images, inputs=[post_generation_slider, total_images], outputs=[post_generation_image], queue=False, show_progress="hidden", concurrency_limit=None)
|
329 |
|
330 |
if __name__ == "__main__":
|
|
|
7 |
import cv2
|
8 |
from PIL import Image
|
9 |
from diffusers.utils import load_image
|
|
|
|
|
10 |
from diffusers.utils import export_to_gif
|
11 |
import random
|
12 |
|
|
|
|
|
|
|
|
|
|
|
|
|
13 |
# load pipelines
|
14 |
base_model = "black-forest-labs/FLUX.1-schnell"
|
15 |
|
|
|
24 |
clip_slider = CLIPSliderFlux(pipe, device=torch.device("cuda"))
|
25 |
|
26 |
|
|
|
|
|
|
|
|
|
|
|
27 |
MAX_SEED = 2**32-1
|
28 |
|
29 |
def convert_to_centered_scale(num):
|
|
|
43 |
def generate(concept_1, concept_2, scale, prompt, randomize_seed=True, seed=42, recalc_directions=True, iterations=200, steps=4, interm_steps=9, guidance_scale=3.5,
|
44 |
x_concept_1="", x_concept_2="",
|
45 |
avg_diff_x=None,
|
|
|
|
|
46 |
total_images=[],
|
47 |
progress=gr.Progress(track_tqdm=True)
|
48 |
):
|
|
|
50 |
# check if avg diff for directions need to be re-calculated
|
51 |
print("slider_x", slider_x)
|
52 |
print("x_concept_1", x_concept_1, "x_concept_2", x_concept_2)
|
|
|
53 |
if randomize_seed:
|
54 |
seed = random.randint(0, MAX_SEED)
|
55 |
|
56 |
if not sorted(slider_x) == sorted([x_concept_1, x_concept_2]) or recalc_directions:
|
|
|
57 |
avg_diff = clip_slider.find_latent_direction(slider_x[0], slider_x[1], num_iterations=iterations)
|
58 |
x_concept_1, x_concept_2 = slider_x[0], slider_x[1]
|
59 |
|
|
|
65 |
image = clip_slider.generate(prompt,
|
66 |
width=768,
|
67 |
height=768,
|
68 |
+
guidance_scale=guidance_scale,
|
69 |
scale=cur_scale, seed=seed, num_inference_steps=steps, avg_diff=avg_diff)
|
70 |
images.append(image)
|
71 |
canvas = Image.new('RGB', (256*interm_steps, 256))
|
|
|
83 |
|
84 |
return x_concept_1,x_concept_2, avg_diff_x, export_to_gif(images, "clip.gif", fps=5), canvas, images, images[scale_middle], post_generation_slider_update, seed
|
85 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
86 |
def update_pre_generated_images(slider_value, total_images):
|
87 |
number_images = len(total_images)
|
88 |
if(number_images > 0):
|
|
|
94 |
def reset_recalc_directions():
|
95 |
return True
|
96 |
|
97 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
98 |
intro = """
|
99 |
<div style="display: flex;align-items: center;justify-content: center">
|
100 |
+
<img src="https://huggingface.co/spaces/LatentNavigation/latentnavigation-flux/resolve/main/Group 4-16.png" width="120" style="display: inline-block">
|
101 |
+
<h1 style="margin-left: 12px;text-align: center;margin-bottom: 7px;display: inline-block;font-size:1.1em">Latent Navigation</h1>
|
102 |
</div>
|
103 |
<div style="display: flex;align-items: center;justify-content: center">
|
104 |
<h3 style="display: inline-block;margin-left: 10px;margin-top: 6px;font-weight: 500">Exploring CLIP text space with FLUX.1 schnell 🪐</h3>
|
|
|
120 |
output_image = gr.Image(label="Gif", elem_id="gif")
|
121 |
post_generation_image = gr.Image(label="Generated Images")
|
122 |
post_generation_slider = gr.Slider(minimum=-2, maximum=2, value=0, step=1, interactive=False)
|
123 |
+
seed = gr.Slider(minimum=0, maximum=MAX_SEED, step=1, label="Seed", interactive=True, randomize=True)
|
124 |
+
|
125 |
with gr.Blocks(css=css) as demo:
|
126 |
|
127 |
gr.HTML(intro)
|
|
|
129 |
x_concept_1 = gr.State("")
|
130 |
x_concept_2 = gr.State("")
|
131 |
total_images = gr.State([])
|
|
|
|
|
132 |
|
133 |
avg_diff_x = gr.State()
|
|
|
134 |
|
135 |
recalc_directions = gr.State(False)
|
136 |
|
|
|
137 |
with gr.Row():
|
138 |
with gr.Column():
|
139 |
with gr.Row():
|
140 |
concept_1 = gr.Textbox(label="1st direction to steer", placeholder="winter")
|
141 |
concept_2 = gr.Textbox(label="2nd direction to steer", placeholder="summer")
|
|
|
|
|
142 |
prompt = gr.Textbox(label="Prompt", info="Describe what you to be steered by the directions", placeholder="A dog in the park")
|
143 |
x = gr.Slider(minimum=0, value=1.5, step=0.1, maximum=4.0, label="Strength", info="maximum strength on each direction (unstable beyond 2.5)")
|
144 |
submit = gr.Button("Generate directions")
|
|
|
153 |
with gr.Group(elem_id="group"):
|
154 |
post_generation_image.render()
|
155 |
post_generation_slider.render()
|
|
|
156 |
with gr.Row():
|
157 |
with gr.Column(scale=4, min_width=50):
|
158 |
image_seq.render()
|
159 |
|
160 |
with gr.Column(scale=2, min_width=50):
|
161 |
output_image.render()
|
|
|
|
|
162 |
|
163 |
with gr.Accordion(label="advanced options", open=False):
|
164 |
iterations = gr.Slider(label = "num iterations for clip directions", minimum=0, value=200, maximum=500, step=1)
|
|
|
172 |
value=3.5,
|
173 |
)
|
174 |
randomize_seed = gr.Checkbox(True, label="Randomize seed")
|
175 |
+
seed.render()
|
176 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
177 |
submit.click(fn=generate,
|
178 |
inputs=[concept_1, concept_2, x, prompt, randomize_seed, seed, recalc_directions, iterations, steps, interm_steps, guidance_scale, x_concept_1, x_concept_2, avg_diff_x, total_images],
|
179 |
outputs=[x_concept_1, x_concept_2, avg_diff_x, output_image, image_seq, total_images, post_generation_image, post_generation_slider, seed])
|
180 |
|
181 |
iterations.change(fn=reset_recalc_directions, outputs=[recalc_directions])
|
182 |
seed.change(fn=reset_recalc_directions, outputs=[recalc_directions])
|
|
|
|
|
|
|
|
|
|
|
183 |
post_generation_slider.change(fn=update_pre_generated_images, inputs=[post_generation_slider, total_images], outputs=[post_generation_image], queue=False, show_progress="hidden", concurrency_limit=None)
|
184 |
|
185 |
if __name__ == "__main__":
|