multimodalart HF staff commited on
Commit
2d475e1
Β·
verified Β·
1 Parent(s): 3c2c999

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +8 -7
app.py CHANGED
@@ -19,19 +19,20 @@ def process_controlnet_img(image):
19
  controlnet_img = Image.fromarray(controlnet_img)
20
 
21
  # load pipelines
 
 
22
  taef1 = AutoencoderTiny.from_pretrained("madebyollin/taef1", torch_dtype=torch.bfloat16).to("cuda")
23
- pipe = FluxPipeline.from_pretrained("black-forest-labs/FLUX.1-schnell",
24
  vae=taef1,
25
  torch_dtype=torch.bfloat16)
26
 
27
  pipe.transformer.to(memory_format=torch.channels_last)
28
- pipe.transformer = torch.compile(pipe.transformer, mode="max-autotune", fullgraph=True)
29
- #pipe.enable_model_cpu_offload()
30
  clip_slider = CLIPSliderFlux(pipe, device=torch.device("cuda"))
31
 
32
 
33
- base_model = 'black-forest-labs/FLUX.1-schnell'
34
- controlnet_model = 'InstantX/FLUX.1-dev-Controlnet-Canny-alpha'
35
  # controlnet = FluxControlNetModel.from_pretrained(controlnet_model, torch_dtype=torch.bfloat16)
36
  # pipe_controlnet = FluxControlNetPipeline.from_pretrained(base_model, controlnet=controlnet, torch_dtype=torch.bfloat16)
37
  # t5_slider_controlnet = T5SliderFlux(sd_pipe=pipe_controlnet,device=torch.device("cuda"))
@@ -97,7 +98,7 @@ def generate(concept_1, concept_2, scale, prompt, randomize_seed=True, seed=42,
97
  post_generation_slider_update = gr.update(label=comma_concepts_x, value=0, minimum=scale_min, maximum=scale_max, interactive=True)
98
  avg_diff_x = avg_diff.cpu()
99
 
100
- return x_concept_1, x_concept_2, avg_diff_x, export_to_gif(images, "clip.gif", fps=5), canvas, images, images[scale_middle], post_generation_slider_update, seed
101
 
102
  @spaces.GPU
103
  def update_scales(x,prompt,seed, steps, interm_steps, guidance_scale,
@@ -234,7 +235,7 @@ with gr.Blocks(css=css) as demo:
234
  examples=examples,
235
  inputs=[concept_1, concept_2, x, prompt],
236
  fn=generate,
237
- outputs=[x, x_concept_1, x_concept_2, avg_diff_x, output_image, image_seq, total_images, post_generation_image, post_generation_slider],
238
  cache_examples="lazy"
239
  )
240
  with gr.Column():
 
19
  controlnet_img = Image.fromarray(controlnet_img)
20
 
21
  # load pipelines
22
+ base_model = "black-forest-labs/FLUX.1-schnell"
23
+
24
  taef1 = AutoencoderTiny.from_pretrained("madebyollin/taef1", torch_dtype=torch.bfloat16).to("cuda")
25
+ pipe = FluxPipeline.from_pretrained(base_model,
26
  vae=taef1,
27
  torch_dtype=torch.bfloat16)
28
 
29
  pipe.transformer.to(memory_format=torch.channels_last)
30
+ # pipe.transformer = torch.compile(pipe.transformer, mode="max-autotune", fullgraph=True)
31
+ # pipe.enable_model_cpu_offload()
32
  clip_slider = CLIPSliderFlux(pipe, device=torch.device("cuda"))
33
 
34
 
35
+ # controlnet_model = 'InstantX/FLUX.1-dev-Controlnet-Canny-alpha'
 
36
  # controlnet = FluxControlNetModel.from_pretrained(controlnet_model, torch_dtype=torch.bfloat16)
37
  # pipe_controlnet = FluxControlNetPipeline.from_pretrained(base_model, controlnet=controlnet, torch_dtype=torch.bfloat16)
38
  # t5_slider_controlnet = T5SliderFlux(sd_pipe=pipe_controlnet,device=torch.device("cuda"))
 
98
  post_generation_slider_update = gr.update(label=comma_concepts_x, value=0, minimum=scale_min, maximum=scale_max, interactive=True)
99
  avg_diff_x = avg_diff.cpu()
100
 
101
+ return x_concept_1,x_concept_2, avg_diff_x, export_to_gif(images, "clip.gif", fps=5), canvas, images, images[scale_middle], post_generation_slider_update, seed
102
 
103
  @spaces.GPU
104
  def update_scales(x,prompt,seed, steps, interm_steps, guidance_scale,
 
235
  examples=examples,
236
  inputs=[concept_1, concept_2, x, prompt],
237
  fn=generate,
238
+ outputs=[x_concept_1, x_concept_2, avg_diff_x, output_image, image_seq, total_images, post_generation_image, post_generation_slider, seed],
239
  cache_examples="lazy"
240
  )
241
  with gr.Column():