Spaces:
Runtime error
Runtime error
seed
Browse files
app.py
CHANGED
@@ -35,6 +35,8 @@ controlnet_model = 'InstantX/FLUX.1-dev-Controlnet-Canny-alpha'
|
|
35 |
# pipe_controlnet = FluxControlNetPipeline.from_pretrained(base_model, controlnet=controlnet, torch_dtype=torch.bfloat16)
|
36 |
# t5_slider_controlnet = T5SliderFlux(sd_pipe=pipe_controlnet,device=torch.device("cuda"))
|
37 |
|
|
|
|
|
38 |
def convert_to_centered_scale(num):
|
39 |
if num <= 0:
|
40 |
raise ValueError("Input must be a positive integer")
|
@@ -49,7 +51,7 @@ def convert_to_centered_scale(num):
|
|
49 |
return tuple(range(start, end + 1))
|
50 |
|
51 |
@spaces.GPU(duration=200)
|
52 |
-
def generate(concept_1, concept_2, scale, prompt, seed=42, recalc_directions=True, iterations=200, steps=4, interm_steps=9, guidance_scale=3.5,
|
53 |
x_concept_1="", x_concept_2="",
|
54 |
avg_diff_x=None,
|
55 |
img2img_type = None, img = None,
|
@@ -62,7 +64,9 @@ def generate(concept_1, concept_2, scale, prompt, seed=42, recalc_directions=Tru
|
|
62 |
print("slider_x", slider_x)
|
63 |
print("x_concept_1", x_concept_1, "x_concept_2", x_concept_2)
|
64 |
#torch.manual_seed(seed)
|
65 |
-
|
|
|
|
|
66 |
if not sorted(slider_x) == sorted([x_concept_1, x_concept_2]) or recalc_directions:
|
67 |
#avg_diff = clip_slider.find_latent_direction(slider_x[0], slider_x[1], num_iterations=iterations).to(torch.float16)
|
68 |
avg_diff = clip_slider.find_latent_direction(slider_x[0], slider_x[1], num_iterations=iterations)
|
@@ -92,7 +96,7 @@ def generate(concept_1, concept_2, scale, prompt, seed=42, recalc_directions=Tru
|
|
92 |
post_generation_slider_update = gr.update(label=comma_concepts_x, value=0, minimum=scale_min, maximum=scale_max, interactive=True)
|
93 |
avg_diff_x = avg_diff.cpu()
|
94 |
|
95 |
-
return x_concept_1, x_concept_2, avg_diff_x, export_to_gif(images, "clip.gif", fps=5), canvas, images, images[scale_middle], post_generation_slider_update
|
96 |
|
97 |
@spaces.GPU
|
98 |
def update_scales(x,prompt,seed, steps, interm_steps, guidance_scale,
|
@@ -257,8 +261,8 @@ with gr.Blocks(css=css) as demo:
|
|
257 |
step=0.1,
|
258 |
value=3.5,
|
259 |
)
|
260 |
-
|
261 |
-
seed
|
262 |
|
263 |
|
264 |
# with gr.Tab(label="image2image"):
|
@@ -309,8 +313,8 @@ with gr.Blocks(css=css) as demo:
|
|
309 |
# inputs=[slider_x, slider_y, prompt, seed, iterations, steps, guidance_scale, x_concept_1, x_concept_2, y_concept_1, y_concept_2, avg_diff_x, avg_diff_y],
|
310 |
# outputs=[x, y, x_concept_1, x_concept_2, y_concept_1, y_concept_2, avg_diff_x, avg_diff_y, output_image])
|
311 |
submit.click(fn=generate,
|
312 |
-
inputs=[concept_1, concept_2, x, prompt, seed, recalc_directions, iterations, steps, interm_steps, guidance_scale, x_concept_1, x_concept_2, avg_diff_x, total_images],
|
313 |
-
outputs=[x_concept_1, x_concept_2, avg_diff_x, output_image, image_seq, total_images, post_generation_image, post_generation_slider])
|
314 |
|
315 |
iterations.change(fn=reset_recalc_directions, outputs=[recalc_directions])
|
316 |
seed.change(fn=reset_recalc_directions, outputs=[recalc_directions])
|
|
|
35 |
# pipe_controlnet = FluxControlNetPipeline.from_pretrained(base_model, controlnet=controlnet, torch_dtype=torch.bfloat16)
|
36 |
# t5_slider_controlnet = T5SliderFlux(sd_pipe=pipe_controlnet,device=torch.device("cuda"))
|
37 |
|
38 |
+
MAX_SEED = 2**32-1
|
39 |
+
|
40 |
def convert_to_centered_scale(num):
|
41 |
if num <= 0:
|
42 |
raise ValueError("Input must be a positive integer")
|
|
|
51 |
return tuple(range(start, end + 1))
|
52 |
|
53 |
@spaces.GPU(duration=200)
|
54 |
+
def generate(concept_1, concept_2, scale, prompt, randomize_seed=True, seed=42, recalc_directions=True, iterations=200, steps=4, interm_steps=9, guidance_scale=3.5,
|
55 |
x_concept_1="", x_concept_2="",
|
56 |
avg_diff_x=None,
|
57 |
img2img_type = None, img = None,
|
|
|
64 |
print("slider_x", slider_x)
|
65 |
print("x_concept_1", x_concept_1, "x_concept_2", x_concept_2)
|
66 |
#torch.manual_seed(seed)
|
67 |
+
if randomize_seed:
|
68 |
+
seed = random.randint(0, MAX_SEED)
|
69 |
+
|
70 |
if not sorted(slider_x) == sorted([x_concept_1, x_concept_2]) or recalc_directions:
|
71 |
#avg_diff = clip_slider.find_latent_direction(slider_x[0], slider_x[1], num_iterations=iterations).to(torch.float16)
|
72 |
avg_diff = clip_slider.find_latent_direction(slider_x[0], slider_x[1], num_iterations=iterations)
|
|
|
96 |
post_generation_slider_update = gr.update(label=comma_concepts_x, value=0, minimum=scale_min, maximum=scale_max, interactive=True)
|
97 |
avg_diff_x = avg_diff.cpu()
|
98 |
|
99 |
+
return x_concept_1, x_concept_2, avg_diff_x, export_to_gif(images, "clip.gif", fps=5), canvas, images, images[scale_middle], post_generation_slider_update, seed
|
100 |
|
101 |
@spaces.GPU
|
102 |
def update_scales(x,prompt,seed, steps, interm_steps, guidance_scale,
|
|
|
261 |
step=0.1,
|
262 |
value=3.5,
|
263 |
)
|
264 |
+
randomize_seed = gr.Checkbox(True, label="Randomize seed")
|
265 |
+
seed = gr.Slider(minimum=0, maximum=MAX_SEED, step=1, label="Seed", interactive=True, randomize=True)
|
266 |
|
267 |
|
268 |
# with gr.Tab(label="image2image"):
|
|
|
313 |
# inputs=[slider_x, slider_y, prompt, seed, iterations, steps, guidance_scale, x_concept_1, x_concept_2, y_concept_1, y_concept_2, avg_diff_x, avg_diff_y],
|
314 |
# outputs=[x, y, x_concept_1, x_concept_2, y_concept_1, y_concept_2, avg_diff_x, avg_diff_y, output_image])
|
315 |
submit.click(fn=generate,
|
316 |
+
inputs=[concept_1, concept_2, x, prompt, randomize_seed, seed, recalc_directions, iterations, steps, interm_steps, guidance_scale, x_concept_1, x_concept_2, avg_diff_x, total_images],
|
317 |
+
outputs=[x_concept_1, x_concept_2, avg_diff_x, output_image, image_seq, total_images, post_generation_image, post_generation_slider, seed])
|
318 |
|
319 |
iterations.change(fn=reset_recalc_directions, outputs=[recalc_directions])
|
320 |
seed.change(fn=reset_recalc_directions, outputs=[recalc_directions])
|