linoyts HF staff commited on
Commit
16908f1
Β·
verified Β·
1 Parent(s): ef1345a

add gif output

Browse files
Files changed (1) hide show
  1. app.py +16 -6
app.py CHANGED
@@ -9,7 +9,7 @@ from PIL import Image
9
  from diffusers.utils import load_image
10
  from diffusers.pipelines.flux.pipeline_flux_controlnet import FluxControlNetPipeline
11
  from diffusers.models.controlnet_flux import FluxControlNetModel
12
-
13
 
14
  def process_controlnet_img(image):
15
  controlnet_img = np.array(image)
@@ -82,16 +82,26 @@ def update_scales(x,prompt,seed, steps, guidance_scale,
82
  controlnet_scale= None, ip_adapter_scale=None,):
83
  print("Hola", x)
84
  avg_diff = avg_diff_x.cuda()
 
 
 
 
 
 
 
85
  if img2img_type=="controlnet canny" and img is not None:
86
  control_img = process_controlnet_img(img)
87
  image = t5_slider_controlnet.generate(prompt, guidance_scale=guidance_scale, image=control_img, controlnet_conditioning_scale =controlnet_scale, scale=x, seed=seed, num_inference_steps=steps, avg_diff=avg_diff)
88
  elif img2img_type=="ip adapter" and img is not None:
89
  image = clip_slider.generate(prompt, guidance_scale=guidance_scale, ip_adapter_image=img, scale=x,seed=seed, num_inference_steps=steps, avg_diff=avg_diff)
90
- else:
91
- image = clip_slider.generate(prompt,
92
- #guidance_scale=guidance_scale,
93
- scale=x, seed=seed, num_inference_steps=steps, avg_diff=avg_diff)
94
- return image
 
 
 
95
 
96
 
97
  def reset_recalc_directions():
 
9
  from diffusers.utils import load_image
10
  from diffusers.pipelines.flux.pipeline_flux_controlnet import FluxControlNetPipeline
11
  from diffusers.models.controlnet_flux import FluxControlNetModel
12
+ from diffusers.utils import export_to_gif
13
 
14
  def process_controlnet_img(image):
15
  controlnet_img = np.array(image)
 
82
  controlnet_scale= None, ip_adapter_scale=None,):
83
  print("Hola", x)
84
  avg_diff = avg_diff_x.cuda()
85
+
86
+ # for spectrum generation
87
+ images = []
88
+ steps=5
89
+ high_scale = x if x > 0 else abs(max(x, -3))
90
+ low_scale = x if x < 0 else x * (-1)
91
+
92
  if img2img_type=="controlnet canny" and img is not None:
93
  control_img = process_controlnet_img(img)
94
  image = t5_slider_controlnet.generate(prompt, guidance_scale=guidance_scale, image=control_img, controlnet_conditioning_scale =controlnet_scale, scale=x, seed=seed, num_inference_steps=steps, avg_diff=avg_diff)
95
  elif img2img_type=="ip adapter" and img is not None:
96
  image = clip_slider.generate(prompt, guidance_scale=guidance_scale, ip_adapter_image=img, scale=x,seed=seed, num_inference_steps=steps, avg_diff=avg_diff)
97
+ else:
98
+ for i in range(steps):
99
+ cur_scale = low_scale + (high_scale - low_scale) * i / (steps - 1)
100
+ image = clip_slider.generate(prompt,
101
+ #guidance_scale=guidance_scale,
102
+ scale=cur_scale, seed=seed, num_inference_steps=steps, avg_diff=avg_diff)
103
+ images.apped(image)
104
+ return export_to_gif(images, "clip.gif", fps=5)
105
 
106
 
107
  def reset_recalc_directions():