latentnavigation-flux / ledits /pipeline_output.py
linoyts's picture
linoyts HF staff
Upload 4 files
376b097 verified
from dataclasses import dataclass
from typing import List, Optional, Union
import numpy as np
import PIL.Image
from diffusers.utils import BaseOutput
@dataclass
class LEditsPPDiffusionPipelineOutput(BaseOutput):
"""
Output class for LEdits++ Diffusion pipelines.
Args:
images (`List[PIL.Image.Image]` or `np.ndarray`)
List of denoised PIL images of length `batch_size` or NumPy array of shape `(batch_size, height, width,
num_channels)`.
nsfw_content_detected (`List[bool]`)
List indicating whether the corresponding generated image contains β€œnot-safe-for-work” (nsfw) content or
`None` if safety checking could not be performed.
"""
images: Union[List[PIL.Image.Image], np.ndarray]
nsfw_content_detected: Optional[List[bool]]
@dataclass
class LEditsPPInversionPipelineOutput(BaseOutput):
"""
Output class for LEdits++ Diffusion pipelines.
Args:
input_images (`List[PIL.Image.Image]` or `np.ndarray`)
List of the cropped and resized input images as PIL images of length `batch_size` or NumPy array of shape `
(batch_size, height, width, num_channels)`.
vae_reconstruction_images (`List[PIL.Image.Image]` or `np.ndarray`)
List of VAE reconstruction of all input images as PIL images of length `batch_size` or NumPy array of shape
` (batch_size, height, width, num_channels)`.
"""
images: Union[List[PIL.Image.Image], np.ndarray]
vae_reconstruction_images: Union[List[PIL.Image.Image], np.ndarray]