Spaces:
Running
on
Zero
Running
on
Zero
import gradio as gr | |
import spaces | |
from clip_slider_pipeline import T5SliderFlux | |
from diffusers import FluxPipeline | |
import torch | |
import time | |
import numpy as np | |
import cv2 | |
from PIL import Image | |
from diffusers.utils import load_image | |
from diffusers.pipelines.flux.pipeline_flux_controlnet import FluxControlNetPipeline | |
from diffusers.models.controlnet_flux import FluxControlNetModel | |
def process_controlnet_img(image): | |
controlnet_img = np.array(image) | |
controlnet_img = cv2.Canny(controlnet_img, 100, 200) | |
controlnet_img = HWC3(controlnet_img) | |
controlnet_img = Image.fromarray(controlnet_img) | |
# load pipelines | |
pipe = FluxPipeline.from_pretrained("black-forest-labs/FLUX.1-schnell", | |
torch_dtype=torch.bfloat16) | |
#pipe.enable_model_cpu_offload() | |
t5_slider = T5SliderFlux(pipe, device=torch.device("cuda")) | |
base_model = 'black-forest-labs/FLUX.1-schnell' | |
controlnet_model = 'InstantX/FLUX.1-dev-Controlnet-Canny-alpha' | |
# controlnet = FluxControlNetModel.from_pretrained(controlnet_model, torch_dtype=torch.bfloat16) | |
# pipe_controlnet = FluxControlNetPipeline.from_pretrained(base_model, controlnet=controlnet, torch_dtype=torch.bfloat16) | |
# t5_slider_controlnet = T5SliderFlux(sd_pipe=pipe_controlnet,device=torch.device("cuda")) | |
def generate(slider_x, slider_y, prompt, seed, iterations, steps, guidance_scale, | |
x_concept_1, x_concept_2, y_concept_1, y_concept_2, | |
avg_diff_x, | |
avg_diff_y,correlation, | |
img2img_type = None, img = None, | |
controlnet_scale= None, ip_adapter_scale=None, | |
): | |
start_time = time.time() | |
# check if avg diff for directions need to be re-calculated | |
print("slider_x", slider_x) | |
print("x_concept_1", x_concept_1, "x_concept_2", x_concept_2) | |
if not sorted(slider_x) == sorted([x_concept_1, x_concept_2]): | |
avg_diff = t5_slider.find_latent_direction(slider_x[0], slider_x[1], num_iterations=iterations).to(torch.float16) | |
x_concept_1, x_concept_2 = slider_x[0], slider_x[1] | |
if not sorted(slider_y) == sorted([y_concept_1, y_concept_2]): | |
avg_diff_2nd = t5_slider.find_latent_direction(slider_y[0], slider_y[1], num_iterations=iterations).to(torch.float16) | |
y_concept_1, y_concept_2 = slider_y[0], slider_y[1] | |
end_time = time.time() | |
print(f"direction time: {end_time - start_time:.2f} ms") | |
start_time = time.time() | |
if img2img_type=="controlnet canny" and img is not None: | |
control_img = process_controlnet_img(img) | |
image = t5_slider_controlnet.generate(prompt, correlation_weight_factor=correlation, guidance_scale=guidance_scale, image=control_img, controlnet_conditioning_scale =controlnet_scale, scale=0, scale_2nd=0, seed=seed, num_inference_steps=steps, avg_diff=avg_diff, avg_diff_2nd=avg_diff_2nd) | |
elif img2img_type=="ip adapter" and img is not None: | |
image = t5_slider.generate(prompt, guidance_scale=guidance_scale, correlation_weight_factor=correlation, ip_adapter_image=img, scale=0, scale_2nd=0, seed=seed, num_inference_steps=steps, avg_diff=avg_diff, avg_diff_2nd=avg_diff_2nd) | |
else: # text to image | |
image = t5_slider.generate(prompt, guidance_scale=guidance_scale, correlation_weight_factor=correlation, scale=0, scale_2nd=0, seed=seed, num_inference_steps=steps, avg_diff=avg_diff, avg_diff_2nd=avg_diff_2nd) | |
end_time = time.time() | |
print(f"generation time: {end_time - start_time:.2f} ms") | |
comma_concepts_x = ', '.join(slider_x) | |
comma_concepts_y = ', '.join(slider_y) | |
avg_diff_x = avg_diff.cpu() | |
avg_diff_y = avg_diff_2nd.cpu() | |
return gr.update(label=comma_concepts_x, interactive=True),gr.update(label=comma_concepts_y, interactive=True), x_concept_1, x_concept_2, y_concept_1, y_concept_2, avg_diff_x, avg_diff_y, image | |
def update_scales(x,y,prompt,seed, steps, guidance_scale, | |
avg_diff_x, avg_diff_y, | |
img2img_type = None, img = None, | |
controlnet_scale= None, ip_adapter_scale=None,): | |
avg_diff = avg_diff_x.cuda() | |
avg_diff_2nd = avg_diff_y.cuda() | |
if img2img_type=="controlnet canny" and img is not None: | |
control_img = process_controlnet_img(img) | |
image = t5_slider_controlnet.generate(prompt, guidance_scale=guidance_scale, image=control_img, controlnet_conditioning_scale =controlnet_scale, scale=x, scale_2nd=y, seed=seed, num_inference_steps=steps, avg_diff=avg_diff,avg_diff_2nd=avg_diff_2nd) | |
elif img2img_type=="ip adapter" and img is not None: | |
image = t5_slider.generate(prompt, guidance_scale=guidance_scale, ip_adapter_image=img, scale=x, scale_2nd=y, seed=seed, num_inference_steps=steps, avg_diff=avg_diff,avg_diff_2nd=avg_diff_2nd) | |
else: | |
image = t5_slider.generate(prompt, guidance_scale=guidance_scale, scale=x, scale_2nd=y, seed=seed, num_inference_steps=steps, avg_diff=avg_diff,avg_diff_2nd=avg_diff_2nd) | |
return image | |
def update_x(x,y,prompt,seed, steps, | |
avg_diff_x, avg_diff_y, | |
img2img_type = None, | |
img = None): | |
avg_diff = avg_diff_x.cuda() | |
avg_diff_2nd = avg_diff_y.cuda() | |
image = t5_slider.generate(prompt, scale=x, scale_2nd=y, seed=seed, num_inference_steps=steps, avg_diff=avg_diff,avg_diff_2nd=avg_diff_2nd) | |
return image | |
def update_y(x,y,prompt,seed, steps, | |
avg_diff_x, avg_diff_y, | |
img2img_type = None, | |
img = None): | |
avg_diff = avg_diff_x.cuda() | |
avg_diff_2nd = avg_diff_y.cuda() | |
image = t5_slider.generate(prompt, scale=x, scale_2nd=y, seed=seed, num_inference_steps=steps, avg_diff=avg_diff,avg_diff_2nd=avg_diff_2nd) | |
return image | |
css = ''' | |
#group { | |
position: relative; | |
width: 420px; | |
height: 420px; | |
margin-bottom: 20px; | |
background-color: white | |
} | |
#x { | |
position: absolute; | |
bottom: 0; | |
left: 25px; | |
width: 400px; | |
} | |
#y { | |
position: absolute; | |
bottom: 20px; | |
left: 67px; | |
width: 400px; | |
transform: rotate(-90deg); | |
transform-origin: left bottom; | |
} | |
#image_out{position:absolute; width: 80%; right: 10px; top: 40px} | |
''' | |
with gr.Blocks(css=css) as demo: | |
x_concept_1 = gr.State("") | |
x_concept_2 = gr.State("") | |
y_concept_1 = gr.State("") | |
y_concept_2 = gr.State("") | |
avg_diff_x = gr.State() | |
avg_diff_y = gr.State() | |
with gr.Tab("text2image"): | |
with gr.Row(): | |
with gr.Column(): | |
slider_x = gr.Dropdown(label="Slider X concept range", allow_custom_value=True, multiselect=True, max_choices=2) | |
slider_y = gr.Dropdown(label="Slider X concept range", allow_custom_value=True, multiselect=True, max_choices=2) | |
prompt = gr.Textbox(label="Prompt") | |
submit = gr.Button("find directions") | |
with gr.Column(): | |
with gr.Group(elem_id="group"): | |
x = gr.Slider(minimum=-10, value=0, maximum=10, elem_id="x", interactive=False) | |
y = gr.Slider(minimum=-10, value=0, maximum=10, elem_id="y", interactive=False) | |
output_image = gr.Image(elem_id="image_out") | |
with gr.Row(): | |
generate_butt = gr.Button("generate") | |
with gr.Accordion(label="advanced options", open=False): | |
iterations = gr.Slider(label = "num iterations", minimum=0, value=200, maximum=400) | |
steps = gr.Slider(label = "num inference steps", minimum=1, value=4, maximum=10) | |
guidance_scale = gr.Slider( | |
label="Guidance scale", | |
minimum=0.1, | |
maximum=10.0, | |
step=0.1, | |
value=5, | |
) | |
correlation = gr.Slider( | |
label="correlation", | |
minimum=0.1, | |
maximum=1.0, | |
step=0.05, | |
value=0.6, | |
) | |
seed = gr.Slider(minimum=0, maximum=np.iinfo(np.int32).max, label="Seed", interactive=True, randomize=True) | |
with gr.Tab(label="image2image"): | |
with gr.Row(): | |
with gr.Column(): | |
image = gr.ImageEditor(type="pil", image_mode="L", crop_size=(512, 512)) | |
slider_x_a = gr.Dropdown(label="Slider X concept range", allow_custom_value=True, multiselect=True, max_choices=2) | |
slider_y_a = gr.Dropdown(label="Slider X concept range", allow_custom_value=True, multiselect=True, max_choices=2) | |
img2img_type = gr.Radio(["controlnet canny", "ip adapter"], label="", info="", visible=False, value="controlnet canny") | |
prompt_a = gr.Textbox(label="Prompt") | |
submit_a = gr.Button("Submit") | |
with gr.Column(): | |
with gr.Group(elem_id="group"): | |
x_a = gr.Slider(minimum=-10, value=0, maximum=10, elem_id="x", interactive=False) | |
y_a = gr.Slider(minimum=-10, value=0, maximum=10, elem_id="y", interactive=False) | |
output_image_a = gr.Image(elem_id="image_out") | |
with gr.Row(): | |
generate_butt_a = gr.Button("generate") | |
with gr.Accordion(label="advanced options", open=False): | |
iterations_a = gr.Slider(label = "num iterations", minimum=0, value=200, maximum=300) | |
steps_a = gr.Slider(label = "num inference steps", minimum=1, value=8, maximum=30) | |
guidance_scale_a = gr.Slider( | |
label="Guidance scale", | |
minimum=0.1, | |
maximum=10.0, | |
step=0.1, | |
value=5, | |
) | |
controlnet_conditioning_scale = gr.Slider( | |
label="controlnet conditioning scale", | |
minimum=0.5, | |
maximum=5.0, | |
step=0.1, | |
value=0.7, | |
) | |
ip_adapter_scale = gr.Slider( | |
label="ip adapter scale", | |
minimum=0.5, | |
maximum=5.0, | |
step=0.1, | |
value=0.8, | |
visible=False | |
) | |
seed_a = gr.Slider(minimum=0, maximum=np.iinfo(np.int32).max, label="Seed", interactive=True, randomize=True) | |
submit.click(fn=generate, | |
inputs=[slider_x, slider_y, prompt, seed, iterations, steps, guidance_scale, x_concept_1, x_concept_2, y_concept_1, y_concept_2, avg_diff_x, avg_diff_y,correlation], | |
outputs=[x, y, x_concept_1, x_concept_2, y_concept_1, y_concept_2, avg_diff_x, avg_diff_y, output_image]) | |
generate_butt.click(fn=update_scales, inputs=[x,y, prompt, seed, steps, guidance_scale, avg_diff_x, avg_diff_y], outputs=[output_image]) | |
generate_butt_a.click(fn=update_scales, inputs=[x_a,y_a, prompt_a, seed_a, steps_a, guidance_scale_a, avg_diff_x, avg_diff_y, img2img_type, image, controlnet_conditioning_scale, ip_adapter_scale], outputs=[output_image_a]) | |
submit_a.click(fn=generate, | |
inputs=[slider_x_a, slider_y_a, prompt_a, seed_a, iterations_a, steps_a, guidance_scale_a, x_concept_1, x_concept_2, y_concept_1, y_concept_2, avg_diff_x, avg_diff_y, correlation, img2img_type, image, controlnet_conditioning_scale, ip_adapter_scale], | |
outputs=[x_a, y_a, x_concept_1, x_concept_2, y_concept_1, y_concept_2, avg_diff_x, avg_diff_y, output_image_a]) | |
if __name__ == "__main__": | |
demo.launch() |