Spaces:
Sleeping
Sleeping
import sys | |
sys.path.append(".") | |
sys.path.append("..") | |
from datasets import load_dataset | |
from transformers import AutoTokenizer | |
from modeling.audiobart import AudioBartForConditionalGeneration | |
from torch.utils.data import DataLoader | |
from data.collator import EncodecCollator | |
import numpy as np | |
import torch | |
import os | |
if __name__=="__main__": | |
model = AudioBartForConditionalGeneration.from_pretrained('bart/model') | |
base_path = "/data/jyk/aac_dataset/AudioCaps/encodec_16/" | |
tokenizer = AutoTokenizer.from_pretrained('facebook/bart-large') | |
data_files = {"train": "csv/AudioCaps/train.csv"} | |
max_encodec_length = 1021 | |
clap_base_path = "/data/jyk/aac_dataset/AudioCaps/clap" | |
raw_dataset = load_dataset("csv", data_files=data_files) | |
def preprocess_function(example): | |
path = example['file_path'] | |
encodec = np.load(os.path.join(base_path, path)) | |
if encodec.shape[0]>max_encodec_length: | |
encodec = encodec[:max_encodec_length, :] | |
clap = np.load(os.path.join(clap_base_path, path)) | |
attention_mask = np.ones(encodec.shape[0]+3).astype(np.int64) | |
target_text = tokenizer(text_target=example['caption']) | |
return {'input_ids': encodec, 'clap': clap, 'attention_mask': attention_mask, 'labels': target_text['input_ids'], 'decoder_attention_mask': target_text['attention_mask']} | |
train_dataset = raw_dataset['train'].map(preprocess_function) | |
train_dataset.set_format("pt", columns=['input_ids', 'attention_mask', 'clap', 'labels', 'decoder_attention_mask']) | |
train_data_collator = EncodecCollator( | |
tokenizer=tokenizer, | |
model=model, | |
return_tensors="pt", | |
random_sampling=False, | |
max_length=max_encodec_length, | |
num_subsampling=0, | |
clap_masking_prob=-1, | |
encodec_masking_prob=0.15, | |
encodec_masking_length=10 | |
) | |
train_dataloader = DataLoader( | |
train_dataset, shuffle=True, collate_fn=train_data_collator, batch_size=16) | |
for idx, batch in enumerate(train_dataloader): | |
# output = model.generate(**batch, max_length=100) | |
output = model(**batch) | |
print(output) | |