enclap / test /dataset_test.py
tonyswoo's picture
Initial Commit
73baeae
import sys
sys.path.append(".")
sys.path.append("..")
from datasets import load_dataset
from transformers import AutoTokenizer
from modeling.audiobart import AudioBartForConditionalGeneration
from torch.utils.data import DataLoader
from data.collator import EncodecCollator
import numpy as np
import torch
import os
if __name__=="__main__":
model = AudioBartForConditionalGeneration.from_pretrained('bart/model')
base_path = "/data/jyk/aac_dataset/AudioCaps/encodec_16/"
tokenizer = AutoTokenizer.from_pretrained('facebook/bart-large')
data_files = {"train": "csv/AudioCaps/train.csv"}
max_encodec_length = 1021
clap_base_path = "/data/jyk/aac_dataset/AudioCaps/clap"
raw_dataset = load_dataset("csv", data_files=data_files)
def preprocess_function(example):
path = example['file_path']
encodec = np.load(os.path.join(base_path, path))
if encodec.shape[0]>max_encodec_length:
encodec = encodec[:max_encodec_length, :]
clap = np.load(os.path.join(clap_base_path, path))
attention_mask = np.ones(encodec.shape[0]+3).astype(np.int64)
target_text = tokenizer(text_target=example['caption'])
return {'input_ids': encodec, 'clap': clap, 'attention_mask': attention_mask, 'labels': target_text['input_ids'], 'decoder_attention_mask': target_text['attention_mask']}
train_dataset = raw_dataset['train'].map(preprocess_function)
train_dataset.set_format("pt", columns=['input_ids', 'attention_mask', 'clap', 'labels', 'decoder_attention_mask'])
train_data_collator = EncodecCollator(
tokenizer=tokenizer,
model=model,
return_tensors="pt",
random_sampling=False,
max_length=max_encodec_length,
num_subsampling=0,
clap_masking_prob=-1,
encodec_masking_prob=0.15,
encodec_masking_length=10
)
train_dataloader = DataLoader(
train_dataset, shuffle=True, collate_fn=train_data_collator, batch_size=16)
for idx, batch in enumerate(train_dataloader):
# output = model.generate(**batch, max_length=100)
output = model(**batch)
print(output)