lamhieu's picture
perf: improvement requests handling with async mode
716eebd
raw
history blame
6.78 kB
from __future__ import annotations
import logging
import os
from datetime import datetime
from typing import Dict, List, Union
from fastapi import APIRouter, BackgroundTasks, HTTPException
from pydantic import BaseModel, Field
from .analytics import Analytics
from .service import (
ModelConfig,
TextModelType,
EmbeddingsService,
ModelKind,
detect_model_kind,
)
logger = logging.getLogger(__name__)
router = APIRouter(
tags=["v1"],
responses={404: {"description": "Not found"}},
)
class EmbeddingRequest(BaseModel):
"""
Request model for generating embeddings.
"""
model: str = Field(
default=TextModelType.MULTILINGUAL_E5_SMALL.value,
description=(
"Which model ID to use? "
"Text options: ['multilingual-e5-small', 'multilingual-e5-base', 'multilingual-e5-large', "
"'snowflake-arctic-embed-l-v2.0', 'paraphrase-multilingual-MiniLM-L12-v2', "
"'paraphrase-multilingual-mpnet-base-v2', 'bge-m3']. "
"Image option: ['siglip-base-patch16-256-multilingual']."
),
)
input: Union[str, List[str]] = Field(
..., description="Text(s) or image URL(s)/path(s)."
)
class RankRequest(BaseModel):
"""
Request model for ranking candidates.
"""
model: str = Field(
default=TextModelType.MULTILINGUAL_E5_SMALL.value,
description=(
"Model ID for the queries. "
"Can be a text or image model (e.g. 'siglip-base-patch16-256-multilingual' for images)."
),
)
queries: Union[str, List[str]] = Field(
..., description="Query text(s) or image(s) depending on the model type."
)
candidates: List[str] = Field(..., description="Candidate texts to rank.")
class EmbeddingResponse(BaseModel):
"""
Response model for embeddings.
"""
object: str
data: List[dict]
model: str
usage: dict
class RankResponse(BaseModel):
"""
Response model for ranking results.
"""
probabilities: List[List[float]]
cosine_similarities: List[List[float]]
class StatsBucket(BaseModel):
"""
Model for daily/weekly/monthly/yearly stats.
"""
total: Dict[str, int]
daily: Dict[str, int]
weekly: Dict[str, int]
monthly: Dict[str, int]
yearly: Dict[str, int]
class StatsResponse(BaseModel):
"""
Analytics stats response model, including both access and token counts.
"""
access: StatsBucket
tokens: StatsBucket
# Initialize the embeddings service and analytics.
service_config = ModelConfig()
embeddings_service = EmbeddingsService(config=service_config)
analytics = Analytics(
url=os.environ.get("REDIS_URL", "redis://localhost:6379/0"),
token=os.environ.get("REDIS_TOKEN", "***"),
sync_interval=30 * 60, # 30 minutes
)
@router.post("/embeddings", response_model=EmbeddingResponse, tags=["embeddings"])
async def create_embeddings(
request: EmbeddingRequest, background_tasks: BackgroundTasks
):
"""
Generate embeddings for the given text or image inputs.
"""
try:
modality = detect_model_kind(request.model)
embeddings = await embeddings_service.generate_embeddings(
model=request.model,
inputs=request.input,
)
# Estimate tokens if using a text model.
total_tokens = 0
if modality == ModelKind.TEXT:
total_tokens = embeddings_service.estimate_tokens(request.input)
resp = {
"object": "list",
"data": [],
"model": request.model,
"usage": {
"prompt_tokens": total_tokens,
"total_tokens": total_tokens,
},
}
for idx, emb in enumerate(embeddings):
resp["data"].append(
{
"object": "embedding",
"index": idx,
"embedding": emb.tolist(),
}
)
# Record analytics in the background.
background_tasks.add_task(
analytics.access, request.model, resp["usage"]["total_tokens"]
)
return resp
except Exception as e:
msg = (
"Failed to generate embeddings. Check model ID, inputs, etc.\n"
f"Details: {str(e)}"
)
logger.error(msg)
raise HTTPException(status_code=500, detail=msg)
@router.post("/rank", response_model=RankResponse, tags=["rank"])
async def rank_candidates(request: RankRequest, background_tasks: BackgroundTasks):
"""
Rank candidate texts against the given queries.
"""
try:
results = await embeddings_service.rank(
model=request.model,
queries=request.queries,
candidates=request.candidates,
)
# Record analytics in the background.
background_tasks.add_task(
analytics.access, request.model, results["usage"]["total_tokens"]
)
return results
except Exception as e:
msg = (
"Failed to rank candidates. Check model ID, inputs, etc.\n"
f"Details: {str(e)}"
)
logger.error(msg)
raise HTTPException(status_code=500, detail=msg)
@router.get("/stats", response_model=StatsResponse, tags=["stats"])
async def get_stats():
"""
Retrieve usage statistics for all models, including access counts and token usage.
"""
try:
day_key = datetime.utcnow().strftime("%Y-%m-%d")
week_key = f"{datetime.utcnow().year}-W{datetime.utcnow().strftime('%U')}"
month_key = datetime.utcnow().strftime("%Y-%m")
year_key = datetime.utcnow().strftime("%Y")
stats_data = (
await analytics.stats()
) # Expected to return a dict with 'access' and 'tokens' keys
return {
"access": {
"total": stats_data["access"].get("total", {}),
"daily": stats_data["access"].get(day_key, {}),
"weekly": stats_data["access"].get(week_key, {}),
"monthly": stats_data["access"].get(month_key, {}),
"yearly": stats_data["access"].get(year_key, {}),
},
"tokens": {
"total": stats_data["tokens"].get("total", {}),
"daily": stats_data["tokens"].get(day_key, {}),
"weekly": stats_data["tokens"].get(week_key, {}),
"monthly": stats_data["tokens"].get(month_key, {}),
"yearly": stats_data["tokens"].get(year_key, {}),
},
}
except Exception as e:
msg = f"Failed to fetch analytics stats: {str(e)}"
logger.error(msg)
raise HTTPException(status_code=500, detail=msg)