Spaces:
Running
Running
File size: 14,707 Bytes
e8f9d10 65c747d e8f9d10 65c747d e8f9d10 26238e1 e8f9d10 26238e1 e8f9d10 de24ee4 e8f9d10 65c747d e8f9d10 65c747d e8f9d10 65c747d e8f9d10 65c747d e8f9d10 de24ee4 e8f9d10 65c747d e8f9d10 65c747d e8f9d10 65c747d e8f9d10 65c747d e8f9d10 65c747d e8f9d10 65c747d e8f9d10 65c747d e8f9d10 65c747d e8f9d10 24dd113 65c747d 24dd113 e8f9d10 de24ee4 e8f9d10 65c747d e8f9d10 65c747d e8f9d10 65c747d e8f9d10 65c747d e8f9d10 65c747d e8f9d10 65c747d e8f9d10 65c747d e8f9d10 65c747d e8f9d10 65c747d f9ce04f 65c747d f9ce04f 65c747d e8f9d10 65c747d e8f9d10 65c747d e8f9d10 65c747d e8f9d10 65c747d e8f9d10 65c747d e8f9d10 65c747d e8f9d10 65c747d e8f9d10 65c747d e8f9d10 65c747d e8f9d10 65c747d e8f9d10 65c747d e8f9d10 65c747d e8f9d10 65c747d e8f9d10 65c747d e8f9d10 65c747d e8f9d10 65c747d e8f9d10 65c747d e8f9d10 65c747d e8f9d10 65c747d e8f9d10 65c747d e8f9d10 65c747d e8f9d10 65c747d e8f9d10 65c747d e8f9d10 65c747d e8f9d10 65c747d e8f9d10 65c747d e8f9d10 65c747d e8f9d10 65c747d e8f9d10 65c747d e8f9d10 65c747d e8f9d10 65c747d e8f9d10 65c747d e8f9d10 65c747d e8f9d10 65c747d e8f9d10 b2c7d24 e8f9d10 65c747d e8f9d10 65c747d e8f9d10 65c747d e8f9d10 65c747d e8f9d10 65c747d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 |
"""
Lightweight Embeddings Service Module (Revised & Simplified)
This module provides a service for generating and comparing embeddings from text and images
using state-of-the-art transformer models. It supports both CPU and GPU inference.
Features:
- Text and image embedding generation
- Cross-modal similarity ranking
- Batch processing support
- Asynchronous API support
Supported Text Model IDs:
- "multilingual-e5-small"
- "multilingual-e5-base"
- "multilingual-e5-large"
- "snowflake-arctic-embed-l-v2.0"
- "paraphrase-multilingual-MiniLM-L12-v2"
- "paraphrase-multilingual-mpnet-base-v2"
- "bge-m3"
- "gte-multilingual-base"
Supported Image Model IDs:
- "google/siglip-base-patch16-256-multilingual" (default, but extensible)
"""
from __future__ import annotations
import logging
from enum import Enum
from typing import List, Union, Literal, Dict, Optional, NamedTuple
from dataclasses import dataclass
from pathlib import Path
from io import BytesIO
import requests
import numpy as np
import torch
from PIL import Image
from sentence_transformers import SentenceTransformer
from transformers import AutoProcessor, AutoModel
logger = logging.getLogger(__name__)
logging.basicConfig(level=logging.INFO)
class TextModelType(str, Enum):
"""
Enumeration of supported text models.
Adjust as needed for your environment.
"""
MULTILINGUAL_E5_SMALL = "multilingual-e5-small"
MULTILINGUAL_E5_BASE = "multilingual-e5-base"
MULTILINGUAL_E5_LARGE = "multilingual-e5-large"
SNOWFLAKE_ARCTIC_EMBED_L_V2 = "snowflake-arctic-embed-l-v2.0"
PARAPHRASE_MULTILINGUAL_MINILM_L12_V2 = "paraphrase-multilingual-MiniLM-L12-v2"
PARAPHRASE_MULTILINGUAL_MPNET_BASE_V2 = "paraphrase-multilingual-mpnet-base-v2"
BGE_M3 = "bge-m3"
GTE_MULTILINGUAL_BASE = "gte-multilingual-base"
class ImageModelType(str, Enum):
"""
Enumeration of supported image models.
"""
SIGLIP_BASE_PATCH16_256_MULTILINGUAL = "siglip-base-patch16-256-multilingual"
class ModelInfo(NamedTuple):
"""
Simple container that maps an enum to:
- model_id: Hugging Face model ID (or local path)
- onnx_file: Path to ONNX file (if available)
"""
model_id: str
onnx_file: Optional[str] = None
@dataclass
class ModelConfig:
"""
Configuration for text and image models.
"""
text_model_type: TextModelType = TextModelType.MULTILINGUAL_E5_SMALL
image_model_type: ImageModelType = (
ImageModelType.SIGLIP_BASE_PATCH16_256_MULTILINGUAL
)
# If you need extra parameters like `logit_scale`, etc., keep them here
logit_scale: float = 4.60517
@property
def text_model_info(self) -> ModelInfo:
"""
Return ModelInfo for the configured text_model_type.
"""
text_configs = {
TextModelType.MULTILINGUAL_E5_SMALL: ModelInfo(
model_id="Xenova/multilingual-e5-small",
onnx_file="onnx/model_quantized.onnx",
),
TextModelType.MULTILINGUAL_E5_BASE: ModelInfo(
model_id="Xenova/multilingual-e5-base",
onnx_file="onnx/model_quantized.onnx",
),
TextModelType.MULTILINGUAL_E5_LARGE: ModelInfo(
model_id="Xenova/multilingual-e5-large",
onnx_file="onnx/model_quantized.onnx",
),
TextModelType.SNOWFLAKE_ARCTIC_EMBED_L_V2: ModelInfo(
model_id="Snowflake/snowflake-arctic-embed-l-v2.0",
onnx_file="onnx/model_quantized.onnx",
),
TextModelType.PARAPHRASE_MULTILINGUAL_MINILM_L12_V2: ModelInfo(
model_id="Xenova/paraphrase-multilingual-MiniLM-L12-v2",
onnx_file="onnx/model_quantized.onnx",
),
TextModelType.PARAPHRASE_MULTILINGUAL_MPNET_BASE_V2: ModelInfo(
model_id="Xenova/paraphrase-multilingual-mpnet-base-v2",
onnx_file="onnx/model_quantized.onnx",
),
TextModelType.BGE_M3: ModelInfo(
model_id="Xenova/bge-m3",
onnx_file="onnx/model_quantized.onnx",
),
TextModelType.GTE_MULTILINGUAL_BASE: ModelInfo(
model_id="onnx-community/gte-multilingual-base",
onnx_file="onnx/model_quantized.onnx",
),
}
return text_configs[self.text_model_type]
@property
def image_model_info(self) -> ModelInfo:
"""
Return ModelInfo for the configured image_model_type.
"""
image_configs = {
ImageModelType.SIGLIP_BASE_PATCH16_256_MULTILINGUAL: ModelInfo(
model_id="google/siglip-base-patch16-256-multilingual"
),
}
return image_configs[self.image_model_type]
class EmbeddingsService:
"""
Service for generating text/image embeddings and performing ranking.
"""
def __init__(self, config: Optional[ModelConfig] = None):
self.device = "cuda" if torch.cuda.is_available() else "cpu"
self.config = config or ModelConfig()
# Preloaded text & image models
self.text_models: Dict[TextModelType, SentenceTransformer] = {}
self.image_models: Dict[ImageModelType, AutoModel] = {}
self.image_processors: Dict[ImageModelType, AutoProcessor] = {}
# Load all models
self._load_all_models()
def _load_all_models(self) -> None:
"""
Pre-load all known text and image models for quick switching.
"""
try:
for t_model_type in TextModelType:
info = ModelConfig(text_model_type=t_model_type).text_model_info
logger.info("Loading text model: %s", info.model_id)
# If you have an ONNX file AND your SentenceTransformer supports ONNX
if info.onnx_file:
logger.info("Using ONNX file: %s", info.onnx_file)
# The following 'backend' & 'model_kwargs' parameters
# are recognized only in special/certain distributions of SentenceTransformer
self.text_models[t_model_type] = SentenceTransformer(
info.model_id,
device=self.device,
backend="onnx", # or "ort" in some custom forks
model_kwargs={
"provider": "CPUExecutionProvider", # or "CUDAExecutionProvider"
"file_name": info.onnx_file,
},
trust_remote_code=True,
)
else:
# Fallback: standard HF loading
self.text_models[t_model_type] = SentenceTransformer(
info.model_id, device=self.device, trust_remote_code=True,
)
for i_model_type in ImageModelType:
model_id = ModelConfig(
image_model_type=i_model_type
).image_model_info.model_id
logger.info("Loading image model: %s", model_id)
# Typically, for CLIP-like models:
model = AutoModel.from_pretrained(model_id).to(self.device)
processor = AutoProcessor.from_pretrained(model_id)
self.image_models[i_model_type] = model
self.image_processors[i_model_type] = processor
logger.info("All models loaded successfully.")
except Exception as e:
msg = f"Error loading models: {str(e)}"
logger.error(msg)
raise RuntimeError(msg) from e
@staticmethod
def _validate_text_input(input_text: Union[str, List[str]]) -> List[str]:
"""
Ensure input_text is a non-empty string or list of strings.
"""
if isinstance(input_text, str):
if not input_text.strip():
raise ValueError("Text input cannot be empty.")
return [input_text]
if not isinstance(input_text, list) or not all(
isinstance(x, str) for x in input_text
):
raise ValueError("Text input must be a string or a list of strings.")
if len(input_text) == 0:
raise ValueError("Text input list cannot be empty.")
return input_text
@staticmethod
def _validate_modality(modality: str) -> None:
if modality not in ("text", "image"):
raise ValueError("Unsupported modality. Must be 'text' or 'image'.")
def _process_image(self, path_or_url: Union[str, Path]) -> torch.Tensor:
"""
Download/Load image from path/URL and apply transformations.
"""
try:
if isinstance(path_or_url, Path) or not path_or_url.startswith("http"):
# Local file path
img = Image.open(path_or_url).convert("RGB")
else:
# URL
resp = requests.get(path_or_url, timeout=10)
resp.raise_for_status()
img = Image.open(BytesIO(resp.content)).convert("RGB")
proc = self.image_processors[self.config.image_model_type]
data = proc(images=img, return_tensors="pt").to(self.device)
return data
except Exception as e:
raise ValueError(f"Error processing image '{path_or_url}': {str(e)}") from e
def _generate_text_embeddings(self, texts: List[str]) -> np.ndarray:
"""
Generate text embeddings using the currently configured text model.
"""
try:
model = self.text_models[self.config.text_model_type]
embeddings = model.encode(texts) # shape: (num_items, emb_dim)
return embeddings
except Exception as e:
raise RuntimeError(
f"Error generating text embeddings for model '{self.config.text_model_type}': {e}"
) from e
def _generate_image_embeddings(
self,
images: Union[str, List[str]],
batch_size: Optional[int] = None,
) -> np.ndarray:
"""
Generate image embeddings using the currently configured image model.
If `batch_size` is None, all images are processed at once.
"""
try:
model = self.image_models[self.config.image_model_type]
# Single image
if isinstance(images, str):
processed = self._process_image(images)
with torch.no_grad():
emb = model.get_image_features(**processed)
return emb.cpu().numpy()
# Multiple images
if batch_size is None:
# Process them all in one batch
tensors = []
for img_path in images:
tensors.append(self._process_image(img_path))
# Concatenate
keys = tensors[0].keys()
combined = {k: torch.cat([t[k] for t in tensors], dim=0) for k in keys}
with torch.no_grad():
emb = model.get_image_features(**combined)
return emb.cpu().numpy()
# Process in smaller batches
all_embeddings = []
for i in range(0, len(images), batch_size):
batch_images = images[i : i + batch_size]
# Process each sub-batch
tensors = []
for img_path in batch_images:
tensors.append(self._process_image(img_path))
keys = tensors[0].keys()
combined = {k: torch.cat([t[k] for t in tensors], dim=0) for k in keys}
with torch.no_grad():
emb = model.get_image_features(**combined)
all_embeddings.append(emb.cpu().numpy())
return np.vstack(all_embeddings)
except Exception as e:
raise RuntimeError(
f"Error generating image embeddings for model '{self.config.image_model_type}': {e}"
) from e
async def generate_embeddings(
self,
input_data: Union[str, List[str]],
modality: Literal["text", "image"],
batch_size: Optional[int] = None,
) -> np.ndarray:
"""
Asynchronously generate embeddings for text or image.
"""
self._validate_modality(modality)
if modality == "text":
text_list = self._validate_text_input(input_data)
return self._generate_text_embeddings(text_list)
else:
return self._generate_image_embeddings(input_data, batch_size=batch_size)
async def rank(
self,
queries: Union[str, List[str]],
candidates: List[str],
modality: Literal["text", "image"],
batch_size: Optional[int] = None,
) -> Dict[str, List[List[float]]]:
"""
Rank candidates (always text) against the queries, which may be text or image.
Returns dict of { probabilities, cosine_similarities }.
"""
# 1) Generate embeddings for queries
query_embeds = await self.generate_embeddings(queries, modality, batch_size)
# 2) Generate embeddings for text candidates
candidate_embeds = await self.generate_embeddings(candidates, "text")
# 3) Compute cosine sim
sim_matrix = self.cosine_similarity(query_embeds, candidate_embeds)
# 4) Apply logit scale + softmax
scaled = np.exp(self.config.logit_scale) * sim_matrix
probs = self.softmax(scaled)
return {
"probabilities": probs.tolist(),
"cosine_similarities": sim_matrix.tolist(),
}
def estimate_tokens(self, input_data: Union[str, List[str]]) -> int:
"""
Estimate token count using the model's tokenizer.
"""
texts = self._validate_text_input(input_data)
model = self.text_models[self.config.text_model_type]
tokenized = model.tokenize(texts)
return sum(len(ids) for ids in tokenized['input_ids'])
@staticmethod
def softmax(scores: np.ndarray) -> np.ndarray:
"""
Standard softmax along the last dimension.
"""
exps = np.exp(scores - np.max(scores, axis=-1, keepdims=True))
return exps / np.sum(exps, axis=-1, keepdims=True)
@staticmethod
def cosine_similarity(a: np.ndarray, b: np.ndarray) -> np.ndarray:
"""
a: (N, D)
b: (M, D)
Return: (N, M) of cos sim
"""
a_norm = a / (np.linalg.norm(a, axis=1, keepdims=True) + 1e-9)
b_norm = b / (np.linalg.norm(b, axis=1, keepdims=True) + 1e-9)
return np.dot(a_norm, b_norm.T)
|