|
import streamlit as st |
|
from streamlit_datalist import stDatalist |
|
import pandas as pd |
|
from utils import extract_from_url, get_model, calculate_memory |
|
import plotly.express as px |
|
import numpy as np |
|
import gc |
|
from huggingface_hub import login |
|
|
|
st.set_page_config(page_title='Lambda LLM VRAM Calculator', layout="wide", initial_sidebar_state="expanded") |
|
|
|
model_list = [ |
|
"NousResearch/Meta-Llama-3-70B-Instruct", |
|
"NousResearch/Meta-Llama-3-8B-Instruct", |
|
"NousResearch/Meta-Llama-3.1-405B-FP8", |
|
"PY007/TinyLlama-1.1B-intermediate-step-480k-1T", |
|
"codellama/CodeLlama-7b-hf", |
|
"codellama/CodeLlama-13b-hf", |
|
"codellama/CodeLlama-34b-hf", |
|
"Phind/Phind-CodeLlama-34B-v2", |
|
"TheBloke/Llama-2-7B-fp16", |
|
"TheBloke/Llama-2-13B-fp16", |
|
"TheBloke/Llama-2-70B-fp16", |
|
"Gryphe/MythoMax-L2-13b", |
|
"uukuguy/speechless-llama2-hermes-orca-platypus-wizardlm-13b", |
|
"lmsys/vicuna-7b-v1.5", |
|
"lmsys/vicuna-13b-v1.5-16k", |
|
"lmsys/longchat-7b-v1.5-32k", |
|
"tiiuae/falcon-7B-Instruct", |
|
"tiiuae/falcon-7B", |
|
"tiiuae/falcon-40B", |
|
"tiiuae/falcon-40B-Instruct", |
|
"tiiuae/falcon-180B", |
|
"tiiuae/falcon-180B-Chat", |
|
] |
|
st.title("Lambda LLM VRAM Calculator") |
|
|
|
percentage_width_main = 80 |
|
st.markdown( |
|
f"""<style> |
|
.appview-container .main .block-container{{ |
|
max-width: {percentage_width_main}%;}} |
|
</style> |
|
""", |
|
unsafe_allow_html=True, |
|
) |
|
|
|
@st.cache_resource() |
|
def cache_model_list(): |
|
model_list_info = {} |
|
for model_name in model_list: |
|
if not "tiiuae/falcon" in model_name: |
|
model = get_model(model_name, library="transformers", access_token="") |
|
model_list_info[model_name] = calculate_memory(model, ["float32", "float16/bfloat16", "int8", "int4"]) |
|
return model_list_info |
|
|
|
@st.cache_resource |
|
def get_gpu_specs(): |
|
return pd.read_csv("data/gpu_specs.csv") |
|
|
|
|
|
|
|
|
|
|
|
|
|
def show_gpu_info(info, trainable_params=0, vendor=""): |
|
for var in ['Inference', 'Full Training Adam', 'LoRa Fine-tuning']: |
|
_info = info.loc[var] |
|
if vendor != "Apple": |
|
if _info['Number of GPUs'] >= 3: |
|
func = st.error |
|
icon = "⛔" |
|
elif _info['Number of GPUs'] == 2: |
|
func = st.warning |
|
icon = "⚠️" |
|
else: |
|
func = st.success |
|
icon = "✅" |
|
|
|
msg = f"You require **{_info['Number of GPUs']}** GPUs for **{var}**" |
|
if var == 'LoRa Fine-tuning': |
|
msg += f" ({trainable_params}%)" |
|
else: |
|
if _info['Number of GPUs']==1: |
|
msg = f"You can run **{var}**" |
|
func = st.success |
|
icon = "✅" |
|
else: |
|
msg = f"You cannot run **{var}**" |
|
func = st.error |
|
icon = "⛔" |
|
func(msg, icon=icon) |
|
|
|
|
|
def get_name(index): |
|
row = gpu_specs.iloc[index] |
|
return f"{row['Product Name']} ({row['RAM (GB)']} GB, {row['Year']})" |
|
|
|
def custom_ceil(a, precision=0): |
|
return np.round(a + 0.5 * 10**(-precision), precision) |
|
|
|
gpu_specs = get_gpu_specs() |
|
model_list_info = cache_model_list() |
|
|
|
_, col, _ = st.columns([1,3,1]) |
|
with col.expander("Info", expanded=True): |
|
st.markdown("""- Model can be selected from the drop-down on the left, press "enter" after selecting to refresh. (You may have to delete the pre-populated model in order to see the whole list) |
|
- Results are broken down by precision, this can be seen in the graph and the chart below.""") |
|
|
|
_, col, _ = st.columns([1,3,1]) |
|
with col.expander("Detailed Information", expanded=False): |
|
st.markdown("""- GPU information comes from [TechPowerUp GPU Specs](https://www.techpowerup.com/gpu-specs/) |
|
- Mainly based on [Model Memory Calculator by hf-accelerate](https://huggingface.co/spaces/hf-accelerate/model-memory-usage) |
|
using `transformers` library |
|
- Inference is calculated following [EleutherAI Transformer Math 101](https://blog.eleuther.ai/transformer-math/), |
|
where is estimated as """) |
|
|
|
st.latex(r"""\text{Memory}_\text{Inference} \approx \text{Model Size} \times 1.2""") |
|
st.markdown("""- For LoRa Fine-tuning, This assumes a **16-bit** dtype of trainable parameters. The formula (in terms of GB) is""") |
|
st.latex(r"\text{Memory}_\text{LoRa} \approx \text{Model Size} + \left(\text{ \# trainable Params}_\text{Billions}\times\frac{16}{8} \times 4\right) \times 1.2") |
|
|
|
access_token = st.sidebar.text_input("Access token") |
|
|
|
if access_token: |
|
login(token=access_token) |
|
|
|
|
|
with st.sidebar.container(): |
|
model_name = stDatalist("Model name (Press Enter to apply)", model_list, index=0) |
|
if not model_name: |
|
st.info("Please enter a model name") |
|
st.stop() |
|
|
|
model_name = extract_from_url(model_name) |
|
if model_name not in st.session_state: |
|
if 'actual_model' in st.session_state: |
|
del st.session_state[st.session_state['actual_model']] |
|
del st.session_state['actual_model'] |
|
gc.collect() |
|
if model_name in model_list_info.keys(): |
|
st.session_state[model_name] = model_list_info[model_name] |
|
else: |
|
model = get_model(model_name, library="transformers", access_token=access_token) |
|
st.session_state[model_name] = calculate_memory(model, ["float32", "float16/bfloat16", "int8", "int4"]) |
|
del model |
|
gc.collect() |
|
st.session_state['actual_model'] = model_name |
|
|
|
|
|
gpu_vendor = st.sidebar.selectbox("GPU Vendor", ["NVIDIA"]) |
|
|
|
gpu_info = gpu_specs[gpu_specs['Vendor'] == gpu_vendor].sort_values('Product Name') |
|
|
|
|
|
|
|
min_ram = gpu_info['RAM (GB)'].min() |
|
max_ram = gpu_info['RAM (GB)'].max() |
|
ram = st.sidebar.slider("Filter by RAM (GB)", min_ram, max_ram, (0.0, 96.0), step=0.5) |
|
gpu_info = gpu_info[gpu_info["RAM (GB)"].between(ram[0], ram[1])] |
|
if len(gpu_info) == 0: |
|
st.sidebar.error(f"**{gpu_vendor}** has no GPU in that RAM range") |
|
st.stop() |
|
gpu = st.sidebar.selectbox("GPU", gpu_info['Product Name'].index.tolist(), format_func=lambda x : gpu_specs.iloc[x]['Product Name']) |
|
gpu_spec = gpu_specs.iloc[gpu] |
|
gpu_spec.name = 'INFO' |
|
|
|
lora_pct = st.sidebar.slider("LoRa % trainable parameters", 0.1, 100.0, 2.0, step=0.1) |
|
|
|
st.sidebar.dataframe(gpu_spec.T.astype(str)) |
|
|
|
memory_table = pd.DataFrame(st.session_state[model_name]).set_index('dtype') |
|
memory_table['LoRA Fine-Tuning (GB)'] = (memory_table["Total Size (GB)"] + |
|
(memory_table["Parameters (Billion)"]* lora_pct/100 * (16/8)*4)) * 1.2 |
|
|
|
_memory_table = memory_table.copy() |
|
memory_table = memory_table.round(2).T |
|
_memory_table /= gpu_spec['RAM (GB)'] |
|
_memory_table = _memory_table.apply(np.ceil).astype(int).drop(columns=['Parameters (Billion)', 'Total Size (GB)']) |
|
_memory_table.columns = ['Inference', 'Full Training Adam', 'LoRa Fine-tuning'] |
|
_memory_table = _memory_table.stack().reset_index() |
|
_memory_table.columns = ['dtype', 'Variable', 'Number of GPUs'] |
|
col1, col2 = st.columns([1,1.3]) |
|
|
|
if gpu_vendor == "Apple": |
|
col.warning("""For M1/M2 Apple chips, PyTorch uses [Metal Performance Shaders (MPS)](https://huggingface.co/docs/accelerate/usage_guides/mps) as backend.\\ |
|
Remember that Apple M1/M2 chips share memory between CPU and GPU.""", icon="⚠️") |
|
_, col, _ = st.columns([1,3,1]) |
|
with col: |
|
st.write(f"#### [{model_name}](https://huggingface.co/{model_name}) ({custom_ceil(memory_table.iloc[3,0],1):.1f}B)") |
|
|
|
dtypes = memory_table.columns.tolist()[::-1] |
|
tabs = st.tabs(dtypes) |
|
for dtype, tab in zip(dtypes, tabs): |
|
with tab: |
|
if dtype in ["int4", "int8"]: |
|
_dtype = dtype.replace("int", "") |
|
st.markdown(f"`int{_dtype}` refers to models in `GPTQ-{_dtype}bit`, `AWQ-{_dtype}bit` or `Q{_dtype}_0 GGUF/GGML`") |
|
info = _memory_table[_memory_table['dtype'] == dtype].set_index('Variable') |
|
show_gpu_info(info, lora_pct, gpu_vendor) |
|
st.write(memory_table.iloc[[0, 1, 2, 4]]) |
|
_, col, _ = st.columns([1,3,1]) |
|
with col.expander("Graph", expanded=False): |
|
extra = "" |
|
if gpu_vendor == "Apple": |
|
st.warning("This graph is irrelevant for M1/M2 chips as they can't run in parallel.", icon="⚠️") |
|
extra = "⚠️" |
|
num_colors= 4 |
|
colors = [px.colors.sequential.RdBu[int(i*(len(px.colors.sequential.RdBu)-1)/(num_colors-1))] for i in range(num_colors)] |
|
fig = px.bar(_memory_table, x='Variable', y='Number of GPUs', color='dtype', barmode='group', color_discrete_sequence=colors) |
|
fig.update_layout(title=dict(text=f"{extra} Number of GPUs required for<br> {get_name(gpu)}", font=dict(size=25)) |
|
, xaxis_tickfont_size=14, yaxis_tickfont_size=16, yaxis_dtick='1') |
|
st.plotly_chart(fig, use_container_width=True) |
|
|
|
|
|
|
|
|