|
import gradio as gr |
|
import torch |
|
from modules.normalization import text_normalize |
|
from modules.webui import webui_utils |
|
from modules.webui.webui_utils import ( |
|
get_speakers, |
|
get_styles, |
|
split_long_text, |
|
) |
|
from modules.hf import spaces |
|
|
|
|
|
|
|
@torch.inference_mode() |
|
@spaces.GPU |
|
def merge_dataframe_to_ssml(dataframe, spk, style, seed): |
|
if style == "*auto": |
|
style = None |
|
if spk == "-1" or spk == -1: |
|
spk = None |
|
if seed == -1 or seed == "-1": |
|
seed = None |
|
|
|
ssml = "" |
|
indent = " " * 2 |
|
|
|
for i, row in dataframe.iterrows(): |
|
ssml += f"{indent}<voice" |
|
if spk: |
|
ssml += f' spk="{spk}"' |
|
if style: |
|
ssml += f' style="{style}"' |
|
if seed: |
|
ssml += f' seed="{seed}"' |
|
ssml += ">\n" |
|
ssml += f"{indent}{indent}{text_normalize(row.iloc[1])}\n" |
|
ssml += f"{indent}</voice>\n" |
|
|
|
return dataframe, spk, style, seed, f"<speak version='0.1'>\n{ssml}</speak>" |
|
|
|
|
|
|
|
|
|
|
|
def create_spliter_tab(ssml_input, tabs1, tabs2): |
|
speakers, speaker_names = webui_utils.get_speaker_names() |
|
speaker_names = ["*random"] + speaker_names |
|
|
|
styles = ["*auto"] + [s.get("name") for s in get_styles()] |
|
|
|
with gr.Row(): |
|
with gr.Column(scale=1): |
|
|
|
with gr.Group(): |
|
gr.Markdown("🗣️Speaker") |
|
spk_input_text = gr.Textbox( |
|
label="Speaker (Text or Seed)", |
|
value="female2", |
|
show_label=False, |
|
) |
|
spk_input_dropdown = gr.Dropdown( |
|
choices=speaker_names, |
|
interactive=True, |
|
value="female : female2", |
|
show_label=False, |
|
) |
|
spk_rand_button = gr.Button( |
|
value="🎲", |
|
variant="secondary", |
|
) |
|
with gr.Group(): |
|
gr.Markdown("🎭Style") |
|
style_input_dropdown = gr.Dropdown( |
|
choices=styles, |
|
interactive=True, |
|
show_label=False, |
|
value="*auto", |
|
) |
|
with gr.Group(): |
|
gr.Markdown("🗣️Seed") |
|
infer_seed_input = gr.Number( |
|
value=42, |
|
label="Inference Seed", |
|
show_label=False, |
|
minimum=-1, |
|
maximum=2**32 - 1, |
|
) |
|
infer_seed_rand_button = gr.Button( |
|
value="🎲", |
|
variant="secondary", |
|
) |
|
|
|
send_btn = gr.Button("📩Send to SSML", variant="primary") |
|
|
|
with gr.Column(scale=3): |
|
with gr.Group(): |
|
gr.Markdown("📝Long Text Input") |
|
gr.Markdown("SSML_SPLITER_GUIDE") |
|
long_text_input = gr.Textbox( |
|
label="Long Text Input", |
|
lines=10, |
|
placeholder="输入长文本", |
|
elem_id="long-text-input", |
|
show_label=False, |
|
) |
|
long_text_split_button = gr.Button("🔪Split Text") |
|
|
|
with gr.Row(): |
|
with gr.Column(scale=3): |
|
with gr.Group(): |
|
gr.Markdown("🎨Output") |
|
long_text_output = gr.DataFrame( |
|
headers=["index", "text", "length"], |
|
datatype=["number", "str", "number"], |
|
elem_id="long-text-output", |
|
interactive=False, |
|
wrap=True, |
|
value=[], |
|
) |
|
|
|
spk_input_dropdown.change( |
|
fn=lambda x: x.startswith("*") and "-1" or x.split(":")[-1].strip(), |
|
inputs=[spk_input_dropdown], |
|
outputs=[spk_input_text], |
|
) |
|
spk_rand_button.click( |
|
lambda x: int(torch.randint(0, 2**32 - 1, (1,)).item()), |
|
inputs=[spk_input_text], |
|
outputs=[spk_input_text], |
|
) |
|
infer_seed_rand_button.click( |
|
lambda x: int(torch.randint(0, 2**32 - 1, (1,)).item()), |
|
inputs=[infer_seed_input], |
|
outputs=[infer_seed_input], |
|
) |
|
long_text_split_button.click( |
|
split_long_text, |
|
inputs=[long_text_input], |
|
outputs=[long_text_output], |
|
) |
|
|
|
infer_seed_rand_button.click( |
|
lambda x: int(torch.randint(0, 2**32 - 1, (1,)).item()), |
|
inputs=[infer_seed_input], |
|
outputs=[infer_seed_input], |
|
) |
|
|
|
send_btn.click( |
|
merge_dataframe_to_ssml, |
|
inputs=[ |
|
long_text_output, |
|
spk_input_text, |
|
style_input_dropdown, |
|
infer_seed_input, |
|
], |
|
outputs=[ |
|
long_text_output, |
|
spk_input_text, |
|
style_input_dropdown, |
|
infer_seed_input, |
|
ssml_input, |
|
], |
|
) |
|
|
|
def change_tab(): |
|
return gr.Tabs(selected="ssml"), gr.Tabs(selected="ssml.editor") |
|
|
|
send_btn.click(change_tab, inputs=[], outputs=[tabs1, tabs2]) |
|
|