chattts / modules /utils /audio.py
zhzluke96
update
d5b3cd8
raw
history blame
3.39 kB
import sys
from pydub import AudioSegment
import soundfile as sf
import pyrubberband as pyrb
import numpy as np
from io import BytesIO
INT16_MAX = np.iinfo(np.int16).max
def audio_to_int16(audio_data):
if (
audio_data.dtype == np.float32
or audio_data.dtype == np.float64
or audio_data.dtype == np.float128
or audio_data.dtype == np.float16
):
audio_data = (audio_data * INT16_MAX).astype(np.int16)
return audio_data
def audiosegment_to_librosawav(audiosegment):
channel_sounds = audiosegment.split_to_mono()
samples = [s.get_array_of_samples() for s in channel_sounds]
fp_arr = np.array(samples).T.astype(np.float32)
fp_arr /= np.iinfo(samples[0].typecode).max
fp_arr = fp_arr.reshape(-1)
return fp_arr
def pydub_to_np(audio: AudioSegment) -> tuple[int, np.ndarray]:
"""
Converts pydub audio segment into np.float32 of shape [duration_in_seconds*sample_rate, channels],
where each value is in range [-1.0, 1.0].
Returns tuple (audio_np_array, sample_rate).
"""
return (
audio.frame_rate,
np.array(audio.get_array_of_samples(), dtype=np.float32).reshape(
(-1, audio.channels)
)
/ (1 << (8 * audio.sample_width - 1)),
)
def ndarray_to_segment(ndarray, frame_rate):
buffer = BytesIO()
sf.write(buffer, ndarray, frame_rate, format="wav")
buffer.seek(0)
sound = AudioSegment.from_wav(
buffer,
)
return sound
def time_stretch(input_segment: AudioSegment, time_factor: float) -> AudioSegment:
"""
factor range -> [0.2,10]
"""
time_factor = np.clip(time_factor, 0.2, 10)
sr = input_segment.frame_rate
y = audiosegment_to_librosawav(input_segment)
y_stretch = pyrb.time_stretch(y, sr, time_factor)
sound = ndarray_to_segment(
y_stretch,
frame_rate=sr,
)
return sound
def pitch_shift(
input_segment: AudioSegment,
pitch_shift_factor: float,
) -> AudioSegment:
"""
factor range -> [-12,12]
"""
pitch_shift_factor = np.clip(pitch_shift_factor, -12, 12)
sr = input_segment.frame_rate
y = audiosegment_to_librosawav(input_segment)
y_shift = pyrb.pitch_shift(y, sr, pitch_shift_factor)
sound = ndarray_to_segment(
y_shift,
frame_rate=sr,
)
return sound
def apply_prosody_to_audio_data(
audio_data: np.ndarray, rate: float, volume: float, pitch: float, sr: int
) -> np.ndarray:
if rate != 1:
audio_data = pyrb.time_stretch(audio_data, sr=sr, rate=rate)
if volume != 0:
audio_data = audio_data * volume
if pitch != 0:
audio_data = pyrb.pitch_shift(audio_data, sr=sr, n_steps=pitch)
return audio_data
if __name__ == "__main__":
input_file = sys.argv[1]
time_stretch_factors = [0.5, 0.75, 1.5, 1.0]
pitch_shift_factors = [-12, -5, 0, 5, 12]
input_sound = AudioSegment.from_mp3(input_file)
for time_factor in time_stretch_factors:
output_wav = f"time_stretched_{int(time_factor * 100)}.wav"
sound = time_stretch(input_sound, time_factor)
sound.export(output_wav, format="wav")
for pitch_factor in pitch_shift_factors:
output_wav = f"pitch_shifted_{int(pitch_factor * 100)}.wav"
sound = pitch_shift(input_sound, pitch_factor)
sound.export(output_wav, format="wav")