|
from functools import lru_cache |
|
import sys |
|
import torch |
|
from modules import config |
|
|
|
import logging |
|
|
|
logger = logging.getLogger(__name__) |
|
|
|
if sys.platform == "darwin": |
|
from modules.devices import mac_devices |
|
|
|
|
|
def has_mps() -> bool: |
|
if sys.platform != "darwin": |
|
return False |
|
else: |
|
return mac_devices.has_mps |
|
|
|
|
|
def get_cuda_device_id(): |
|
return ( |
|
int(config.runtime_env_vars.device_id) |
|
if config.runtime_env_vars.device_id is not None |
|
and config.runtime_env_vars.device_id.isdigit() |
|
else 0 |
|
) or torch.cuda.current_device() |
|
|
|
|
|
def get_cuda_device_string(): |
|
if config.runtime_env_vars.device_id is not None: |
|
return f"cuda:{config.runtime_env_vars.device_id}" |
|
|
|
return "cuda" |
|
|
|
|
|
def get_available_gpus() -> list[tuple[int, int]]: |
|
""" |
|
Get the list of available GPUs and their free memory. |
|
|
|
:return: A list of tuples where each tuple contains (GPU index, free memory in bytes). |
|
""" |
|
available_gpus = [] |
|
for i in range(torch.cuda.device_count()): |
|
props = torch.cuda.get_device_properties(i) |
|
free_memory = props.total_memory - torch.cuda.memory_reserved(i) |
|
available_gpus.append((i, free_memory)) |
|
return available_gpus |
|
|
|
|
|
def get_memory_available_gpus(min_memory=2048): |
|
available_gpus = get_available_gpus() |
|
memory_available_gpus = [ |
|
gpu for gpu, free_memory in available_gpus if free_memory > min_memory |
|
] |
|
return memory_available_gpus |
|
|
|
|
|
def get_target_device_id_or_memory_available_gpu(): |
|
memory_available_gpus = get_memory_available_gpus() |
|
device_id = get_cuda_device_id() |
|
if device_id not in memory_available_gpus: |
|
if len(memory_available_gpus) != 0: |
|
logger.warning( |
|
f"Device {device_id} is not available or does not have enough memory. will try to use {memory_available_gpus}" |
|
) |
|
config.runtime_env_vars.device_id = str(memory_available_gpus[0]) |
|
else: |
|
logger.warning( |
|
f"Device {device_id} is not available or does not have enough memory. Using CPU instead." |
|
) |
|
return "cpu" |
|
return get_cuda_device_string() |
|
|
|
|
|
def get_optimal_device_name(): |
|
if config.runtime_env_vars.use_cpu: |
|
return "cpu" |
|
|
|
if torch.cuda.is_available(): |
|
return get_target_device_id_or_memory_available_gpu() |
|
|
|
if has_mps(): |
|
return "mps" |
|
|
|
return "cpu" |
|
|
|
|
|
def get_optimal_device(): |
|
return torch.device(get_optimal_device_name()) |
|
|
|
|
|
def get_device_for(task): |
|
if task in config.cmd_opts.use_cpu or "all" in config.cmd_opts.use_cpu: |
|
return cpu |
|
|
|
return get_optimal_device() |
|
|
|
|
|
def torch_gc(): |
|
try: |
|
if torch.cuda.is_available(): |
|
with torch.cuda.device(get_cuda_device_string()): |
|
torch.cuda.empty_cache() |
|
torch.cuda.ipc_collect() |
|
|
|
if has_mps(): |
|
mac_devices.torch_mps_gc() |
|
except Exception as e: |
|
logger.error(f"Error in torch_gc", exc_info=True) |
|
|
|
|
|
cpu: torch.device = torch.device("cpu") |
|
device: torch.device = get_optimal_device() |
|
dtype: torch.dtype = torch.float32 |
|
dtype_dvae: torch.dtype = torch.float32 |
|
dtype_vocos: torch.dtype = torch.float32 |
|
dtype_gpt: torch.dtype = torch.float32 |
|
dtype_decoder: torch.dtype = torch.float32 |
|
|
|
|
|
def reset_device(): |
|
if config.runtime_env_vars.half: |
|
global dtype |
|
global dtype_dvae |
|
global dtype_vocos |
|
global dtype_gpt |
|
global dtype_decoder |
|
dtype = torch.float16 |
|
dtype_dvae = torch.float16 |
|
dtype_vocos = torch.float16 |
|
dtype_gpt = torch.float16 |
|
dtype_decoder = torch.float16 |
|
|
|
logger.info("Using half precision: torch.float16") |
|
|
|
if ( |
|
config.runtime_env_vars.device_id is not None |
|
or config.runtime_env_vars.use_cpu is not None |
|
): |
|
global device |
|
device = get_optimal_device() |
|
|
|
logger.info(f"Using device: {device}") |
|
|
|
|
|
@lru_cache |
|
def first_time_calculation(): |
|
""" |
|
just do any calculation with pytorch layers - the first time this is done it allocaltes about 700MB of memory and |
|
spends about 2.7 seconds doing that, at least wih NVidia. |
|
""" |
|
|
|
x = torch.zeros((1, 1)).to(device, dtype) |
|
linear = torch.nn.Linear(1, 1).to(device, dtype) |
|
linear(x) |
|
|
|
x = torch.zeros((1, 1, 3, 3)).to(device, dtype) |
|
conv2d = torch.nn.Conv2d(1, 1, (3, 3)).to(device, dtype) |
|
conv2d(x) |
|
|